Firna Sholihuda Sholihuda, Bambang Darmo Yuwono, H. Rustamadji
{"title":"PEMANFAATAN TEXT MINING PADA SISTEM PENGOLAHAN SKRIPSI MENGGUNAKAN ALGORITMA NAÏVE BAYES CLASSIFIER DAN SIMPLE ADDITIVE WEIGHTING","authors":"Firna Sholihuda Sholihuda, Bambang Darmo Yuwono, H. Rustamadji","doi":"10.31315/TELEMATIKA.V1I1.3379","DOIUrl":null,"url":null,"abstract":"Tahapan awal skripsi adalah pengajuan proposal skripsi. Proposal skripsi akan diproses untuk menentukan dosen pembimbing, kemudian skripsi dapat dilanjutkan ke tahap penyusunan. Saat ini pengolahan skripsi menggunakan cara manual, dari penentuan dosen pembimbing hingga pengumpulan laporan akhir. Koordinator Skripsi juga harus mencocokkan data proposal dengan data dosen pembimbing secara manual. Maka, penggunaan Sistem Informasi dapat membantu menentukan dosen pembimbing dan sebagai layanan skripsi. Langkah awal dalam menentukan dosen pembimbing adalah mengetahui tema dan konsentrasi proposal skripsi. Untuk mengetahui tema dan konsentrasi proposal dilakukan analisis isi proposal menggunakan metode Text Mining. Text Mining bekerja dengan cara preprocessing menggunakan tokenizing, filtering, dan stemming untuk mendapatkan kata dasar dari setiap kata dalam setiap kalimat. Kemudian melakukan klasifikasi dokumen proposal sesuai dengan tema dan konsentrasi menggunakan algoritma Naive Bayes Classifier berdasarkan hasil preprocessing. Tema dan konsentrasi merupakan salah satu kriteria penentukan dosen pembimbing menggunakan algoritma Simple Additive Weighting untuk dilakukan perangkingan pembobotan setiap dosen. Berdasarkan hasil penelitian yang telah dilakukan, proses penentuan tema dan konsentrasi dari proposal skripsi mahasiswa dapat membantu dalam melakukan klasifikasi dokumen dengan tingkat akurasi mencapai 78%. Pembobotan dosen pembimbing proposal skripsi sesuai dengan kriteria menunjukkan hasil dengan nilai perangkingan yang beragam sesuai dengan bobot kriteria setiap dosen pembimbing.","PeriodicalId":31716,"journal":{"name":"Telematika","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2020-11-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Telematika","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.31315/TELEMATIKA.V1I1.3379","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

论文的第一阶段是提出一项扎实的建议。论文建议将被处理以确定顾问,然后论文可以继续到起草阶段。目前使用手册处理论文,从导师的决定到最终的报告。写作协调人还必须手动将提案数据与指导顾问的数据匹配。因此,使用信息系统可以帮助确定导师和作为论文服务。确定导师的第一步是确定论文的主题和集中注意力。为了确定提案的主题和重点,使用文本挖掘方法对其内容进行分析。文本挖掘是通过预习的方式使用的,过滤,盖章来获得每个句子中的每个单词的词根。然后根据主题和注意力对建议书文件进行分类,使用基于预测结果的天真贝斯经典算法。主题和专注是指导顾问使用简单的上瘾算法进行黑客攻击的默认标准之一。根据所做的研究,学生论文建议的主题确定和集中过程可以帮助文件进行分类,准确性高达78%。顾问建议根据标准作弊,根据每个顾问的标准,计算出不同战斗值的结果。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
PEMANFAATAN TEXT MINING PADA SISTEM PENGOLAHAN SKRIPSI MENGGUNAKAN ALGORITMA NAÏVE BAYES CLASSIFIER DAN SIMPLE ADDITIVE WEIGHTING
Tahapan awal skripsi adalah pengajuan proposal skripsi. Proposal skripsi akan diproses untuk menentukan dosen pembimbing, kemudian skripsi dapat dilanjutkan ke tahap penyusunan. Saat ini pengolahan skripsi menggunakan cara manual, dari penentuan dosen pembimbing hingga pengumpulan laporan akhir. Koordinator Skripsi juga harus mencocokkan data proposal dengan data dosen pembimbing secara manual. Maka, penggunaan Sistem Informasi dapat membantu menentukan dosen pembimbing dan sebagai layanan skripsi. Langkah awal dalam menentukan dosen pembimbing adalah mengetahui tema dan konsentrasi proposal skripsi. Untuk mengetahui tema dan konsentrasi proposal dilakukan analisis isi proposal menggunakan metode Text Mining. Text Mining bekerja dengan cara preprocessing menggunakan tokenizing, filtering, dan stemming untuk mendapatkan kata dasar dari setiap kata dalam setiap kalimat. Kemudian melakukan klasifikasi dokumen proposal sesuai dengan tema dan konsentrasi menggunakan algoritma Naive Bayes Classifier berdasarkan hasil preprocessing. Tema dan konsentrasi merupakan salah satu kriteria penentukan dosen pembimbing menggunakan algoritma Simple Additive Weighting untuk dilakukan perangkingan pembobotan setiap dosen. Berdasarkan hasil penelitian yang telah dilakukan, proses penentuan tema dan konsentrasi dari proposal skripsi mahasiswa dapat membantu dalam melakukan klasifikasi dokumen dengan tingkat akurasi mencapai 78%. Pembobotan dosen pembimbing proposal skripsi sesuai dengan kriteria menunjukkan hasil dengan nilai perangkingan yang beragam sesuai dengan bobot kriteria setiap dosen pembimbing.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
7
审稿时长
24 weeks
期刊最新文献
Identification of Social Media Posts Containing Self-reported COVID-19 Symptoms using Triple Word Embeddings and Long Short-Term Memory Deep Learning for Histopathological Image Analysis: A Convolutional Neural Network Approach to Colon Cancer Classification Comparative Analysis of Classification Methods in Sentiment Analysis: The Impact of Feature Selection and Ensemble Techniques Optimization Optimizing Clustering of Indonesian Text Data Using Particle Swarm Optimization Algorithm: A Case Study of the Quran Translation Monitoring Development Board based on InfluxDB and Grafana
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1