利用神经网络从阴影和距离数据中整合形状

M. Mostafa, S. Yamany, A. Farag
{"title":"利用神经网络从阴影和距离数据中整合形状","authors":"M. Mostafa, S. Yamany, A. Farag","doi":"10.1109/CVPR.1999.784602","DOIUrl":null,"url":null,"abstract":"This paper presents a framework for integrating multiple sensory data, sparse range data and dense depth maps from shape from shading in order to improve the 3D reconstruction of visible surfaces of 3D objects. The integration process is based on propagating the error difference between the two data sets by fitting a surface to that difference and using it to correct the visible surface obtained from shape from shading. A feedforward neural network is used to fit a surface to the sparse data. We also study the use of the extended Kalman filter for supervised learning and compare it with the backpropagation algorithm. A performance analysis is done to obtain the best neural network architecture and learning algorithm. It is found that the integration of sparse depth measurements has greatly enhanced the 3D visible surface obtained from shape from shading in terms of metric measurements.","PeriodicalId":20644,"journal":{"name":"Proceedings. 1999 IEEE Computer Society Conference on Computer Vision and Pattern Recognition (Cat. No PR00149)","volume":"24 1","pages":"15-20 Vol. 2"},"PeriodicalIF":0.0000,"publicationDate":"1999-06-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"28","resultStr":"{\"title\":\"Integrating shape from shading and range data using neural networks\",\"authors\":\"M. Mostafa, S. Yamany, A. Farag\",\"doi\":\"10.1109/CVPR.1999.784602\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This paper presents a framework for integrating multiple sensory data, sparse range data and dense depth maps from shape from shading in order to improve the 3D reconstruction of visible surfaces of 3D objects. The integration process is based on propagating the error difference between the two data sets by fitting a surface to that difference and using it to correct the visible surface obtained from shape from shading. A feedforward neural network is used to fit a surface to the sparse data. We also study the use of the extended Kalman filter for supervised learning and compare it with the backpropagation algorithm. A performance analysis is done to obtain the best neural network architecture and learning algorithm. It is found that the integration of sparse depth measurements has greatly enhanced the 3D visible surface obtained from shape from shading in terms of metric measurements.\",\"PeriodicalId\":20644,\"journal\":{\"name\":\"Proceedings. 1999 IEEE Computer Society Conference on Computer Vision and Pattern Recognition (Cat. No PR00149)\",\"volume\":\"24 1\",\"pages\":\"15-20 Vol. 2\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"1999-06-23\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"28\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings. 1999 IEEE Computer Society Conference on Computer Vision and Pattern Recognition (Cat. No PR00149)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/CVPR.1999.784602\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings. 1999 IEEE Computer Society Conference on Computer Vision and Pattern Recognition (Cat. No PR00149)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/CVPR.1999.784602","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 28

摘要

为了提高三维物体可见表面的三维重建,本文提出了一种从形状到阴影的多感官数据、稀疏距离数据和密集深度图的集成框架。积分过程是基于传播两个数据集之间的误差差,通过拟合一个表面到该差异,并用它来校正从阴影中获得的形状可见表面。采用前馈神经网络对稀疏数据拟合曲面。我们还研究了扩展卡尔曼滤波在监督学习中的应用,并将其与反向传播算法进行了比较。为了获得最佳的神经网络结构和学习算法,进行了性能分析。研究发现,稀疏深度测量值的整合,极大地增强了从阴影形状获得的三维可见表面的度量值。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Integrating shape from shading and range data using neural networks
This paper presents a framework for integrating multiple sensory data, sparse range data and dense depth maps from shape from shading in order to improve the 3D reconstruction of visible surfaces of 3D objects. The integration process is based on propagating the error difference between the two data sets by fitting a surface to that difference and using it to correct the visible surface obtained from shape from shading. A feedforward neural network is used to fit a surface to the sparse data. We also study the use of the extended Kalman filter for supervised learning and compare it with the backpropagation algorithm. A performance analysis is done to obtain the best neural network architecture and learning algorithm. It is found that the integration of sparse depth measurements has greatly enhanced the 3D visible surface obtained from shape from shading in terms of metric measurements.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Visual signature verification using affine arc-length A novel Bayesian method for fitting parametric and non-parametric models to noisy data Material classification for 3D objects in aerial hyperspectral images Deformable template and distribution mixture-based data modeling for the endocardial contour tracking in an echographic sequence Applying perceptual grouping to content-based image retrieval: building images
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1