{"title":"基于拉普拉斯图平滑的深度神经网络侧向互动","authors":"Jianhui Chen, Zuoren Wang, Cheng-Lin Liu","doi":"10.1049/cit2.12265","DOIUrl":null,"url":null,"abstract":"<p>Lateral interaction in the biological brain is a key mechanism that underlies higher cognitive functions. Linear self-organising map (SOM) introduces lateral interaction in a general form in which signals of any modality can be used. Some approaches directly incorporate SOM learning rules into neural networks, but incur complex operations and poor extendibility. The efficient way to implement lateral interaction in deep neural networks is not well established. The use of Laplacian Matrix-based Smoothing (LS) regularisation is proposed for implementing lateral interaction in a concise form. The authors’ derivation and experiments show that lateral interaction implemented by SOM model is a special case of LS-regulated k-means, and they both show the topology-preserving capability. The authors also verify that LS-regularisation can be used in conjunction with the end-to-end training paradigm in deep auto-encoders. Additionally, the benefits of LS-regularisation in relaxing the requirement of parameter initialisation in various models and improving the classification performance of prototype classifiers are evaluated. Furthermore, the topologically ordered structure introduced by LS-regularisation in feature extractor can improve the generalisation performance on classification tasks. Overall, LS-regularisation is an effective and efficient way to implement lateral interaction and can be easily extended to different models.</p>","PeriodicalId":46211,"journal":{"name":"CAAI Transactions on Intelligence Technology","volume":"8 4","pages":"1590-1607"},"PeriodicalIF":8.4000,"publicationDate":"2023-08-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://ietresearch.onlinelibrary.wiley.com/doi/epdf/10.1049/cit2.12265","citationCount":"0","resultStr":"{\"title\":\"Lateral interaction by Laplacian-based graph smoothing for deep neural networks\",\"authors\":\"Jianhui Chen, Zuoren Wang, Cheng-Lin Liu\",\"doi\":\"10.1049/cit2.12265\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>Lateral interaction in the biological brain is a key mechanism that underlies higher cognitive functions. Linear self-organising map (SOM) introduces lateral interaction in a general form in which signals of any modality can be used. Some approaches directly incorporate SOM learning rules into neural networks, but incur complex operations and poor extendibility. The efficient way to implement lateral interaction in deep neural networks is not well established. The use of Laplacian Matrix-based Smoothing (LS) regularisation is proposed for implementing lateral interaction in a concise form. The authors’ derivation and experiments show that lateral interaction implemented by SOM model is a special case of LS-regulated k-means, and they both show the topology-preserving capability. The authors also verify that LS-regularisation can be used in conjunction with the end-to-end training paradigm in deep auto-encoders. Additionally, the benefits of LS-regularisation in relaxing the requirement of parameter initialisation in various models and improving the classification performance of prototype classifiers are evaluated. Furthermore, the topologically ordered structure introduced by LS-regularisation in feature extractor can improve the generalisation performance on classification tasks. Overall, LS-regularisation is an effective and efficient way to implement lateral interaction and can be easily extended to different models.</p>\",\"PeriodicalId\":46211,\"journal\":{\"name\":\"CAAI Transactions on Intelligence Technology\",\"volume\":\"8 4\",\"pages\":\"1590-1607\"},\"PeriodicalIF\":8.4000,\"publicationDate\":\"2023-08-29\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://ietresearch.onlinelibrary.wiley.com/doi/epdf/10.1049/cit2.12265\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"CAAI Transactions on Intelligence Technology\",\"FirstCategoryId\":\"94\",\"ListUrlMain\":\"https://onlinelibrary.wiley.com/doi/10.1049/cit2.12265\",\"RegionNum\":2,\"RegionCategory\":\"计算机科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"CAAI Transactions on Intelligence Technology","FirstCategoryId":"94","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1049/cit2.12265","RegionNum":2,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE","Score":null,"Total":0}
Lateral interaction by Laplacian-based graph smoothing for deep neural networks
Lateral interaction in the biological brain is a key mechanism that underlies higher cognitive functions. Linear self-organising map (SOM) introduces lateral interaction in a general form in which signals of any modality can be used. Some approaches directly incorporate SOM learning rules into neural networks, but incur complex operations and poor extendibility. The efficient way to implement lateral interaction in deep neural networks is not well established. The use of Laplacian Matrix-based Smoothing (LS) regularisation is proposed for implementing lateral interaction in a concise form. The authors’ derivation and experiments show that lateral interaction implemented by SOM model is a special case of LS-regulated k-means, and they both show the topology-preserving capability. The authors also verify that LS-regularisation can be used in conjunction with the end-to-end training paradigm in deep auto-encoders. Additionally, the benefits of LS-regularisation in relaxing the requirement of parameter initialisation in various models and improving the classification performance of prototype classifiers are evaluated. Furthermore, the topologically ordered structure introduced by LS-regularisation in feature extractor can improve the generalisation performance on classification tasks. Overall, LS-regularisation is an effective and efficient way to implement lateral interaction and can be easily extended to different models.
期刊介绍:
CAAI Transactions on Intelligence Technology is a leading venue for original research on the theoretical and experimental aspects of artificial intelligence technology. We are a fully open access journal co-published by the Institution of Engineering and Technology (IET) and the Chinese Association for Artificial Intelligence (CAAI) providing research which is openly accessible to read and share worldwide.