José González-Cabañas;Patricia Callejo;Rubén Cuevas;Steffen Svartberg;Tommy Torjesen;Ángel Cuevas;Antonio Pastor;Mikko Kotila
{"title":"CarbonTag:基于浏览器的在线广告能耗近似法","authors":"José González-Cabañas;Patricia Callejo;Rubén Cuevas;Steffen Svartberg;Tommy Torjesen;Ángel Cuevas;Antonio Pastor;Mikko Kotila","doi":"10.1109/TSUSC.2023.3286916","DOIUrl":null,"url":null,"abstract":"Energy is today the most critical environmental challenge. The amount of carbon emissions contributing to climate change is significantly influenced by both the production and consumption of energy. Measuring and reducing the energy consumption of services is a crucial step toward reducing adverse environmental effects caused by carbon emissions. Millions of websites rely on online advertisements to generate revenue, with most websites earning most or all of their revenues from ads. As a result, hundreds of billions of online ads are delivered daily to internet users to be rendered in their browsers. Both the delivery and rendering of each ad consume energy. This study investigates how much energy online ads use in the rendering process and offers a way for predicting it as part of rendering the ad. To the best of the authors’ knowledge, this is the first study to calculate the energy usage of single advertisements in the rendering process. Our research further introduces different levels of consumption by which online ads can be classified based on energy efficiency. This classification will allow advertisers to add energy efficiency metrics and optimize campaigns towards consuming less possible.","PeriodicalId":13268,"journal":{"name":"IEEE Transactions on Sustainable Computing","volume":"8 4","pages":"739-750"},"PeriodicalIF":3.0000,"publicationDate":"2023-06-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"CarbonTag: A Browser-Based Method for Approximating Energy Consumption of Online Ads\",\"authors\":\"José González-Cabañas;Patricia Callejo;Rubén Cuevas;Steffen Svartberg;Tommy Torjesen;Ángel Cuevas;Antonio Pastor;Mikko Kotila\",\"doi\":\"10.1109/TSUSC.2023.3286916\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Energy is today the most critical environmental challenge. The amount of carbon emissions contributing to climate change is significantly influenced by both the production and consumption of energy. Measuring and reducing the energy consumption of services is a crucial step toward reducing adverse environmental effects caused by carbon emissions. Millions of websites rely on online advertisements to generate revenue, with most websites earning most or all of their revenues from ads. As a result, hundreds of billions of online ads are delivered daily to internet users to be rendered in their browsers. Both the delivery and rendering of each ad consume energy. This study investigates how much energy online ads use in the rendering process and offers a way for predicting it as part of rendering the ad. To the best of the authors’ knowledge, this is the first study to calculate the energy usage of single advertisements in the rendering process. Our research further introduces different levels of consumption by which online ads can be classified based on energy efficiency. This classification will allow advertisers to add energy efficiency metrics and optimize campaigns towards consuming less possible.\",\"PeriodicalId\":13268,\"journal\":{\"name\":\"IEEE Transactions on Sustainable Computing\",\"volume\":\"8 4\",\"pages\":\"739-750\"},\"PeriodicalIF\":3.0000,\"publicationDate\":\"2023-06-16\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"IEEE Transactions on Sustainable Computing\",\"FirstCategoryId\":\"94\",\"ListUrlMain\":\"https://ieeexplore.ieee.org/document/10154177/\",\"RegionNum\":3,\"RegionCategory\":\"计算机科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"COMPUTER SCIENCE, HARDWARE & ARCHITECTURE\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE Transactions on Sustainable Computing","FirstCategoryId":"94","ListUrlMain":"https://ieeexplore.ieee.org/document/10154177/","RegionNum":3,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"COMPUTER SCIENCE, HARDWARE & ARCHITECTURE","Score":null,"Total":0}
CarbonTag: A Browser-Based Method for Approximating Energy Consumption of Online Ads
Energy is today the most critical environmental challenge. The amount of carbon emissions contributing to climate change is significantly influenced by both the production and consumption of energy. Measuring and reducing the energy consumption of services is a crucial step toward reducing adverse environmental effects caused by carbon emissions. Millions of websites rely on online advertisements to generate revenue, with most websites earning most or all of their revenues from ads. As a result, hundreds of billions of online ads are delivered daily to internet users to be rendered in their browsers. Both the delivery and rendering of each ad consume energy. This study investigates how much energy online ads use in the rendering process and offers a way for predicting it as part of rendering the ad. To the best of the authors’ knowledge, this is the first study to calculate the energy usage of single advertisements in the rendering process. Our research further introduces different levels of consumption by which online ads can be classified based on energy efficiency. This classification will allow advertisers to add energy efficiency metrics and optimize campaigns towards consuming less possible.