基于人工神经网络的测井TOC预测新模型

A. Sultan
{"title":"基于人工神经网络的测井TOC预测新模型","authors":"A. Sultan","doi":"10.2118/194716-MS","DOIUrl":null,"url":null,"abstract":"\n The key factor for characterizing unconventional shale reservoirs is the total organic carbon (TOC). TOC is estimated conventionally by analysis cores samples which requires extensive lab work, thus it is time-consuming and costly. Several empirical models are suggested to estimate the TOC indirectly using conventional well logs. These models assume the TOC and well logs are linearly related, this assumption significantly reduces the TOC estimation accuracy.\n In this work, the design parameters of the artificial neural network (ANN) were optimized using self-adaptive differential evolution (SaDE) method to effectively predict the TOC from the conventional well log data. A new correlation for TOC calculation was developed, which is based on the optimized SaDE-ANN model. 460 data points of different well logs from Barnett formation were used to learn and validate the optimized SaDE-ANN model. The predictability of the SaDE-ANN correlation was compared with the available correlations for predicting the TOC using 29 data point from Duvernay formation.\n The TOC was estimated using the optimized SaDE-ANN model with an average absolute percentage error (AAPE) and correlation coefficient (R) of 6% and 0.98, respectively. The SaDE-ANN correlation developed for TOC prediction outperformed the recent models suggested by Wang et al. (2016) and Mahmoud et al. (2017). The new empirical equation reduced the AAPE in predicting the TOC by 67% compared to Mahmoud et al. (2017) model in Duvernay formation.","PeriodicalId":10908,"journal":{"name":"Day 2 Tue, March 19, 2019","volume":"7 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2019-03-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"6","resultStr":"{\"title\":\"New Artificial Neural Network Model for Predicting the TOC from Well Logs\",\"authors\":\"A. Sultan\",\"doi\":\"10.2118/194716-MS\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"\\n The key factor for characterizing unconventional shale reservoirs is the total organic carbon (TOC). TOC is estimated conventionally by analysis cores samples which requires extensive lab work, thus it is time-consuming and costly. Several empirical models are suggested to estimate the TOC indirectly using conventional well logs. These models assume the TOC and well logs are linearly related, this assumption significantly reduces the TOC estimation accuracy.\\n In this work, the design parameters of the artificial neural network (ANN) were optimized using self-adaptive differential evolution (SaDE) method to effectively predict the TOC from the conventional well log data. A new correlation for TOC calculation was developed, which is based on the optimized SaDE-ANN model. 460 data points of different well logs from Barnett formation were used to learn and validate the optimized SaDE-ANN model. The predictability of the SaDE-ANN correlation was compared with the available correlations for predicting the TOC using 29 data point from Duvernay formation.\\n The TOC was estimated using the optimized SaDE-ANN model with an average absolute percentage error (AAPE) and correlation coefficient (R) of 6% and 0.98, respectively. The SaDE-ANN correlation developed for TOC prediction outperformed the recent models suggested by Wang et al. (2016) and Mahmoud et al. (2017). The new empirical equation reduced the AAPE in predicting the TOC by 67% compared to Mahmoud et al. (2017) model in Duvernay formation.\",\"PeriodicalId\":10908,\"journal\":{\"name\":\"Day 2 Tue, March 19, 2019\",\"volume\":\"7 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2019-03-15\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"6\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Day 2 Tue, March 19, 2019\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.2118/194716-MS\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Day 2 Tue, March 19, 2019","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.2118/194716-MS","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 6

摘要

总有机碳(TOC)是表征非常规页岩储层的关键因素。TOC通常是通过分析岩心样品来估计的,这需要大量的实验室工作,因此既耗时又昂贵。提出了几种利用常规测井资料间接估算TOC的经验模型。这些模型假设TOC和测井曲线是线性相关的,这种假设大大降低了TOC估计的精度。采用自适应差分进化(SaDE)方法对人工神经网络(ANN)的设计参数进行优化,从常规测井资料中有效预测TOC。在优化的SaDE-ANN模型的基础上,建立了一种新的TOC计算关联。利用Barnett地层的460个不同测井数据点来学习和验证优化后的SaDE-ANN模型。将SaDE-ANN相关性的可预测性与利用Duvernay地层29个数据点预测TOC的可用相关性进行了比较。利用优化后的SaDE-ANN模型估计TOC,平均绝对百分比误差(AAPE)和相关系数(R)分别为6%和0.98。用于TOC预测的SaDE-ANN相关性优于Wang等人(2016)和Mahmoud等人(2017)提出的最新模型。与Mahmoud et al.(2017)的Duvernay地层模型相比,新的经验方程将预测TOC的AAPE降低了67%。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
New Artificial Neural Network Model for Predicting the TOC from Well Logs
The key factor for characterizing unconventional shale reservoirs is the total organic carbon (TOC). TOC is estimated conventionally by analysis cores samples which requires extensive lab work, thus it is time-consuming and costly. Several empirical models are suggested to estimate the TOC indirectly using conventional well logs. These models assume the TOC and well logs are linearly related, this assumption significantly reduces the TOC estimation accuracy. In this work, the design parameters of the artificial neural network (ANN) were optimized using self-adaptive differential evolution (SaDE) method to effectively predict the TOC from the conventional well log data. A new correlation for TOC calculation was developed, which is based on the optimized SaDE-ANN model. 460 data points of different well logs from Barnett formation were used to learn and validate the optimized SaDE-ANN model. The predictability of the SaDE-ANN correlation was compared with the available correlations for predicting the TOC using 29 data point from Duvernay formation. The TOC was estimated using the optimized SaDE-ANN model with an average absolute percentage error (AAPE) and correlation coefficient (R) of 6% and 0.98, respectively. The SaDE-ANN correlation developed for TOC prediction outperformed the recent models suggested by Wang et al. (2016) and Mahmoud et al. (2017). The new empirical equation reduced the AAPE in predicting the TOC by 67% compared to Mahmoud et al. (2017) model in Duvernay formation.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Cost and Time Effective Stimulation Technique in Horizontal Cemented Liner Application in Carbonate Reservoir With HPCT Hydrajetting Tools Single Trip Multizone Perforation and Gravel Pack STPP: Success Story and Lessons Learned in Malaysian Application Machine Learning and the Analysis of High-Power Electromagnetic Interaction with Subsurface Matter Acoustic Properties of Carbonate: An Experimental and Modelling Study Application of Renewable Energy in the Oil and Gas Industry
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1