1200v SiC开关的短路稳健性

R. Singh, B. Grummel, S. Sundaresan
{"title":"1200v SiC开关的短路稳健性","authors":"R. Singh, B. Grummel, S. Sundaresan","doi":"10.1109/WIPDA.2015.7369309","DOIUrl":null,"url":null,"abstract":"Short-circuit (SC) robustness of 1200 V-rated SiC npn Junction Transistors (SJTs) and commercial power DMOSFETs is investigated. Due to low overdrive base currents and low short-circuit currents the absence of short-channel effects, SJTs demonstrate superior SC capability including: (a) minimum short-circuit withstand time (tSc) of 14 μs, even at Vds=1000 V (b) Perfectly stable output and blocking characteristics after the application of 10,000, 10 μs long SC pulses at 800 V, and (c) tSC ≥ 18 μs at 800 V up to (at-least) 175°C base-plate temperatures. In contrast, commercial (Gen-II) 1200 V/80 mΩ SiC MOSFETs exhibit catastrophic failure beyond tSC = 7 μs at 500 V, and tSC = 3 μs at 800 V, due to excessive SC currents of > 200 A resulting in junction temperatures in excess of 650°C. Also, the MOSFET's drain leakage currents increase by a factor of 120, and the Vth reduces by 20%, after the application of 7 μs-long SC pulses at 500 V. Electro-thermal simulations indicate a significantly lower junction temperature for SJTs during short circuit pulses as compared to SiC MOSFETs.","PeriodicalId":6538,"journal":{"name":"2015 IEEE 3rd Workshop on Wide Bandgap Power Devices and Applications (WiPDA)","volume":"39 1","pages":"1-4"},"PeriodicalIF":0.0000,"publicationDate":"2015-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"13","resultStr":"{\"title\":\"Short circuit robustness of 1200 V SiC switches\",\"authors\":\"R. Singh, B. Grummel, S. Sundaresan\",\"doi\":\"10.1109/WIPDA.2015.7369309\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Short-circuit (SC) robustness of 1200 V-rated SiC npn Junction Transistors (SJTs) and commercial power DMOSFETs is investigated. Due to low overdrive base currents and low short-circuit currents the absence of short-channel effects, SJTs demonstrate superior SC capability including: (a) minimum short-circuit withstand time (tSc) of 14 μs, even at Vds=1000 V (b) Perfectly stable output and blocking characteristics after the application of 10,000, 10 μs long SC pulses at 800 V, and (c) tSC ≥ 18 μs at 800 V up to (at-least) 175°C base-plate temperatures. In contrast, commercial (Gen-II) 1200 V/80 mΩ SiC MOSFETs exhibit catastrophic failure beyond tSC = 7 μs at 500 V, and tSC = 3 μs at 800 V, due to excessive SC currents of > 200 A resulting in junction temperatures in excess of 650°C. Also, the MOSFET's drain leakage currents increase by a factor of 120, and the Vth reduces by 20%, after the application of 7 μs-long SC pulses at 500 V. Electro-thermal simulations indicate a significantly lower junction temperature for SJTs during short circuit pulses as compared to SiC MOSFETs.\",\"PeriodicalId\":6538,\"journal\":{\"name\":\"2015 IEEE 3rd Workshop on Wide Bandgap Power Devices and Applications (WiPDA)\",\"volume\":\"39 1\",\"pages\":\"1-4\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2015-11-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"13\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2015 IEEE 3rd Workshop on Wide Bandgap Power Devices and Applications (WiPDA)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/WIPDA.2015.7369309\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2015 IEEE 3rd Workshop on Wide Bandgap Power Devices and Applications (WiPDA)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/WIPDA.2015.7369309","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 13

摘要

研究了1200 v额定SiC npn结晶体管(sjt)和商用功率dmosfet的短路鲁棒性。由于低过载基极电流和低短路电流,没有短通道效应,sjt表现出优异的SC性能,包括:(a)即使在Vds=1000 V时,最小短路耐受时间(tSc)为14 μs; (b)在800 V下施加10,000 μs长的SC脉冲后,输出和阻塞特性非常稳定;(c)在800 V下,tSc≥18 μs,直至(至少)175°c的基片温度。相比之下,商用(Gen-II) 1200 V/80 mΩ SiC mosfet在500 V时tSC = 7 μs,在800 V时tSC = 3 μs,由于大于200 A的SC电流过大,导致结温超过650℃,导致灾难性失效。此外,在500 V下施加7 μs长的SC脉冲后,MOSFET的漏极泄漏电流增加了120倍,Vth降低了20%。电热模拟表明,与SiC mosfet相比,sjt在短路脉冲期间的结温明显较低。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Short circuit robustness of 1200 V SiC switches
Short-circuit (SC) robustness of 1200 V-rated SiC npn Junction Transistors (SJTs) and commercial power DMOSFETs is investigated. Due to low overdrive base currents and low short-circuit currents the absence of short-channel effects, SJTs demonstrate superior SC capability including: (a) minimum short-circuit withstand time (tSc) of 14 μs, even at Vds=1000 V (b) Perfectly stable output and blocking characteristics after the application of 10,000, 10 μs long SC pulses at 800 V, and (c) tSC ≥ 18 μs at 800 V up to (at-least) 175°C base-plate temperatures. In contrast, commercial (Gen-II) 1200 V/80 mΩ SiC MOSFETs exhibit catastrophic failure beyond tSC = 7 μs at 500 V, and tSC = 3 μs at 800 V, due to excessive SC currents of > 200 A resulting in junction temperatures in excess of 650°C. Also, the MOSFET's drain leakage currents increase by a factor of 120, and the Vth reduces by 20%, after the application of 7 μs-long SC pulses at 500 V. Electro-thermal simulations indicate a significantly lower junction temperature for SJTs during short circuit pulses as compared to SiC MOSFETs.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Recent developments in GaN-based optical rapid switching semiconductor devices Loss analysis of GaN devices in an isolated bidirectional DC-DC converter Monolithic integrated quasi-normally-off gate driver and 600 V GaN-on-Si HEMT A 1 MHz eGaN FET based 4-switch buck-boost converter for automotive applications Reliability and failure physics of GaN HEMT, MIS-HEMT and p-gate HEMTs for power switching applications: Parasitic effects and degradation due to deep level effects and time-dependent breakdown phenomena
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1