{"title":"1200v SiC开关的短路稳健性","authors":"R. Singh, B. Grummel, S. Sundaresan","doi":"10.1109/WIPDA.2015.7369309","DOIUrl":null,"url":null,"abstract":"Short-circuit (SC) robustness of 1200 V-rated SiC npn Junction Transistors (SJTs) and commercial power DMOSFETs is investigated. Due to low overdrive base currents and low short-circuit currents the absence of short-channel effects, SJTs demonstrate superior SC capability including: (a) minimum short-circuit withstand time (tSc) of 14 μs, even at Vds=1000 V (b) Perfectly stable output and blocking characteristics after the application of 10,000, 10 μs long SC pulses at 800 V, and (c) tSC ≥ 18 μs at 800 V up to (at-least) 175°C base-plate temperatures. In contrast, commercial (Gen-II) 1200 V/80 mΩ SiC MOSFETs exhibit catastrophic failure beyond tSC = 7 μs at 500 V, and tSC = 3 μs at 800 V, due to excessive SC currents of > 200 A resulting in junction temperatures in excess of 650°C. Also, the MOSFET's drain leakage currents increase by a factor of 120, and the Vth reduces by 20%, after the application of 7 μs-long SC pulses at 500 V. Electro-thermal simulations indicate a significantly lower junction temperature for SJTs during short circuit pulses as compared to SiC MOSFETs.","PeriodicalId":6538,"journal":{"name":"2015 IEEE 3rd Workshop on Wide Bandgap Power Devices and Applications (WiPDA)","volume":"39 1","pages":"1-4"},"PeriodicalIF":0.0000,"publicationDate":"2015-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"13","resultStr":"{\"title\":\"Short circuit robustness of 1200 V SiC switches\",\"authors\":\"R. Singh, B. Grummel, S. Sundaresan\",\"doi\":\"10.1109/WIPDA.2015.7369309\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Short-circuit (SC) robustness of 1200 V-rated SiC npn Junction Transistors (SJTs) and commercial power DMOSFETs is investigated. Due to low overdrive base currents and low short-circuit currents the absence of short-channel effects, SJTs demonstrate superior SC capability including: (a) minimum short-circuit withstand time (tSc) of 14 μs, even at Vds=1000 V (b) Perfectly stable output and blocking characteristics after the application of 10,000, 10 μs long SC pulses at 800 V, and (c) tSC ≥ 18 μs at 800 V up to (at-least) 175°C base-plate temperatures. In contrast, commercial (Gen-II) 1200 V/80 mΩ SiC MOSFETs exhibit catastrophic failure beyond tSC = 7 μs at 500 V, and tSC = 3 μs at 800 V, due to excessive SC currents of > 200 A resulting in junction temperatures in excess of 650°C. Also, the MOSFET's drain leakage currents increase by a factor of 120, and the Vth reduces by 20%, after the application of 7 μs-long SC pulses at 500 V. Electro-thermal simulations indicate a significantly lower junction temperature for SJTs during short circuit pulses as compared to SiC MOSFETs.\",\"PeriodicalId\":6538,\"journal\":{\"name\":\"2015 IEEE 3rd Workshop on Wide Bandgap Power Devices and Applications (WiPDA)\",\"volume\":\"39 1\",\"pages\":\"1-4\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2015-11-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"13\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2015 IEEE 3rd Workshop on Wide Bandgap Power Devices and Applications (WiPDA)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/WIPDA.2015.7369309\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2015 IEEE 3rd Workshop on Wide Bandgap Power Devices and Applications (WiPDA)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/WIPDA.2015.7369309","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Short-circuit (SC) robustness of 1200 V-rated SiC npn Junction Transistors (SJTs) and commercial power DMOSFETs is investigated. Due to low overdrive base currents and low short-circuit currents the absence of short-channel effects, SJTs demonstrate superior SC capability including: (a) minimum short-circuit withstand time (tSc) of 14 μs, even at Vds=1000 V (b) Perfectly stable output and blocking characteristics after the application of 10,000, 10 μs long SC pulses at 800 V, and (c) tSC ≥ 18 μs at 800 V up to (at-least) 175°C base-plate temperatures. In contrast, commercial (Gen-II) 1200 V/80 mΩ SiC MOSFETs exhibit catastrophic failure beyond tSC = 7 μs at 500 V, and tSC = 3 μs at 800 V, due to excessive SC currents of > 200 A resulting in junction temperatures in excess of 650°C. Also, the MOSFET's drain leakage currents increase by a factor of 120, and the Vth reduces by 20%, after the application of 7 μs-long SC pulses at 500 V. Electro-thermal simulations indicate a significantly lower junction temperature for SJTs during short circuit pulses as compared to SiC MOSFETs.