环己烷中空间电荷有限注入引起的电流体动力运动

M. Becerra, H. Frid
{"title":"环己烷中空间电荷有限注入引起的电流体动力运动","authors":"M. Becerra, H. Frid","doi":"10.1109/ICDL.2014.6893115","DOIUrl":null,"url":null,"abstract":"A self-consistent numerical model is presented in order to study the electrohydrodynamic (EHD) motion generated by a stationary, space-charge limited injection of charge in the point-plane geometry. In this multiphysics model, the continuity equations for charge carriers and Poisson's equation are coupled with Navier-Stokes equations and the heat equation. This model is used to study the EHD motion of cyclohexane in the negative point-plane geometry for sharp points with tip radius of 0.2 μm. It is shown that the injection of charges from a very sharp point electrode results in the formation of a thin plume with high liquid velocity. The results show large differences in the liquid velocity close to the point electrode compared to the average velocity estimated by the well-known electrohydrodynamic mobility. The difference between the width of the charged core and the hydrodynamic plume is analyzed and presented. It is shown that the local heating of the liquid is strongly reduced by the convective losses generated by EHD motion. Finally, it is found that the liquid temperature in cyclohexane in the vicinitiy of sharp points under space charge limited injection can reach temperatures slightly above boiling temperature, without generating bubbles.","PeriodicalId":6523,"journal":{"name":"2014 IEEE 18th International Conference on Dielectric Liquids (ICDL)","volume":"8 1","pages":"1-4"},"PeriodicalIF":0.0000,"publicationDate":"2014-09-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"4","resultStr":"{\"title\":\"Electrohydrodynamic motion due to space-charge limited injection of charges in cyclohexane\",\"authors\":\"M. Becerra, H. Frid\",\"doi\":\"10.1109/ICDL.2014.6893115\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"A self-consistent numerical model is presented in order to study the electrohydrodynamic (EHD) motion generated by a stationary, space-charge limited injection of charge in the point-plane geometry. In this multiphysics model, the continuity equations for charge carriers and Poisson's equation are coupled with Navier-Stokes equations and the heat equation. This model is used to study the EHD motion of cyclohexane in the negative point-plane geometry for sharp points with tip radius of 0.2 μm. It is shown that the injection of charges from a very sharp point electrode results in the formation of a thin plume with high liquid velocity. The results show large differences in the liquid velocity close to the point electrode compared to the average velocity estimated by the well-known electrohydrodynamic mobility. The difference between the width of the charged core and the hydrodynamic plume is analyzed and presented. It is shown that the local heating of the liquid is strongly reduced by the convective losses generated by EHD motion. Finally, it is found that the liquid temperature in cyclohexane in the vicinitiy of sharp points under space charge limited injection can reach temperatures slightly above boiling temperature, without generating bubbles.\",\"PeriodicalId\":6523,\"journal\":{\"name\":\"2014 IEEE 18th International Conference on Dielectric Liquids (ICDL)\",\"volume\":\"8 1\",\"pages\":\"1-4\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2014-09-08\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"4\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2014 IEEE 18th International Conference on Dielectric Liquids (ICDL)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICDL.2014.6893115\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2014 IEEE 18th International Conference on Dielectric Liquids (ICDL)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICDL.2014.6893115","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 4

摘要

本文建立了一个自洽的数值模型,用于研究点平面几何中固定的、空间电荷有限的电荷注入所产生的电流体动力运动。在该多物理场模型中,载流子的连续性方程和泊松方程与Navier-Stokes方程和热方程耦合。利用该模型研究了环己烷在负点平面几何中尖尖半径为0.2 μm的EHD运动。结果表明,从极尖电极注入电荷可形成具有高液速的细羽流。结果表明,与众所周知的电流体动力学迁移率估计的平均速度相比,靠近点电极的液体速度有很大差异。分析并给出了带电堆芯宽度与流体动力羽流宽度的差异。结果表明,EHD运动产生的对流损失大大降低了液体的局部加热。最后发现,在空间电荷限制注入下,尖锐点附近环己烷的液体温度可以达到略高于沸点的温度,而不会产生气泡。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Electrohydrodynamic motion due to space-charge limited injection of charges in cyclohexane
A self-consistent numerical model is presented in order to study the electrohydrodynamic (EHD) motion generated by a stationary, space-charge limited injection of charge in the point-plane geometry. In this multiphysics model, the continuity equations for charge carriers and Poisson's equation are coupled with Navier-Stokes equations and the heat equation. This model is used to study the EHD motion of cyclohexane in the negative point-plane geometry for sharp points with tip radius of 0.2 μm. It is shown that the injection of charges from a very sharp point electrode results in the formation of a thin plume with high liquid velocity. The results show large differences in the liquid velocity close to the point electrode compared to the average velocity estimated by the well-known electrohydrodynamic mobility. The difference between the width of the charged core and the hydrodynamic plume is analyzed and presented. It is shown that the local heating of the liquid is strongly reduced by the convective losses generated by EHD motion. Finally, it is found that the liquid temperature in cyclohexane in the vicinitiy of sharp points under space charge limited injection can reach temperatures slightly above boiling temperature, without generating bubbles.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Determination of the thermal endurance of transformer oil by structural analyses Energy spectrum of vacancies and nanobubbles in condense matter: Crystal melting Methods for monitoring age-related changes in transformer oils Electrohydrodynamic motion due to space-charge limited injection of charges in cyclohexane The effect of surface treatment of silica nanoparticles on the breakdown strength of mineral oil
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1