{"title":"用于视频监控的运动物体检测和跟踪","authors":"I. Cohen, G. Medioni","doi":"10.1109/CVPR.1999.784651","DOIUrl":null,"url":null,"abstract":"We address the problem of detection and tracking of moving objects in a video stream obtained from a moving airborne platform. The proposed method relies on a graph representation of moving objects which allows to derive and maintain a dynamic template of each moving object by enforcing their temporal coherence. This inferred template along with the graph representation used in our approach allows us to characterize objects trajectories as an optimal path in a graph. The proposed tracker allows to deal with partial occlusions, stop and go motion in very challenging situations. We demonstrate results on a number of different real sequences. We then define an evaluation methodology to quantify our results and show how tracking overcome detection errors.","PeriodicalId":20644,"journal":{"name":"Proceedings. 1999 IEEE Computer Society Conference on Computer Vision and Pattern Recognition (Cat. No PR00149)","volume":"18 1","pages":"319-325 Vol. 2"},"PeriodicalIF":0.0000,"publicationDate":"1999-06-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"250","resultStr":"{\"title\":\"Detecting and tracking moving objects for video surveillance\",\"authors\":\"I. Cohen, G. Medioni\",\"doi\":\"10.1109/CVPR.1999.784651\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We address the problem of detection and tracking of moving objects in a video stream obtained from a moving airborne platform. The proposed method relies on a graph representation of moving objects which allows to derive and maintain a dynamic template of each moving object by enforcing their temporal coherence. This inferred template along with the graph representation used in our approach allows us to characterize objects trajectories as an optimal path in a graph. The proposed tracker allows to deal with partial occlusions, stop and go motion in very challenging situations. We demonstrate results on a number of different real sequences. We then define an evaluation methodology to quantify our results and show how tracking overcome detection errors.\",\"PeriodicalId\":20644,\"journal\":{\"name\":\"Proceedings. 1999 IEEE Computer Society Conference on Computer Vision and Pattern Recognition (Cat. No PR00149)\",\"volume\":\"18 1\",\"pages\":\"319-325 Vol. 2\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"1999-06-23\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"250\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings. 1999 IEEE Computer Society Conference on Computer Vision and Pattern Recognition (Cat. No PR00149)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/CVPR.1999.784651\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings. 1999 IEEE Computer Society Conference on Computer Vision and Pattern Recognition (Cat. No PR00149)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/CVPR.1999.784651","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Detecting and tracking moving objects for video surveillance
We address the problem of detection and tracking of moving objects in a video stream obtained from a moving airborne platform. The proposed method relies on a graph representation of moving objects which allows to derive and maintain a dynamic template of each moving object by enforcing their temporal coherence. This inferred template along with the graph representation used in our approach allows us to characterize objects trajectories as an optimal path in a graph. The proposed tracker allows to deal with partial occlusions, stop and go motion in very challenging situations. We demonstrate results on a number of different real sequences. We then define an evaluation methodology to quantify our results and show how tracking overcome detection errors.