Gientry Rachma Ditami, Eva Faja Ripanti, Herry Sujaini
{"title":"Implementasi Support Vector Machine untuk Analisis Sentimen Terhadap Pengaruh Program Promosi Event Belanja pada Marketplace","authors":"Gientry Rachma Ditami, Eva Faja Ripanti, Herry Sujaini","doi":"10.26418/jp.v8i3.56478","DOIUrl":null,"url":null,"abstract":"Tren belanja online membuat berbagai brand marketplace di Indonesia menerapkan strategi pemasaran terbaiknya untuk menarik minat pelanggan, salah satunya program promosi event belanja. Shopee dan Tokopedia merupakan dua brand marketplace teratas di Indonesia dengan pengunjung terbanyak berdasarkan data Similarweb tahun 2021. Pengalaman pengguna seputar promosi event belanja marketplace berlangsung di media sosial, salah satunya Twitter. Tujuan dari penelitian ini adalah membangun model analisis sentimen yang mampu mengklasifikasikan tweets masyarakat terkait dengan program promosi event belanja yang dilakukan oleh Shopee dan Tokopedia. Penelitian ini menggunakan data tweets pada periode yang telah ditentukan. Rangkaian text preprocessing yang dilakukan adalah case folding, tokenizing, filtering, normalisasi kata, dan stemming. Pembobotan kata menggunakan TF-IDF, Support Vector Machine sebagai algoritma pengklasifikasian, Grid Search untuk mencari parameter optimal, dan K-Fold Cross Validation serta Confusion Matrix untuk validasi dan pengujian model. Berdasarkan hasil analisis dan observasi, penelitian ini mengidentifikasi event belanja pada Shopee tanggal 25, flash sale, gratis ongkir, COD, tanggal kembar, dan Shopee 12.12. Sedangkan untuk Tokopedia tanggal 25, kejar diskon, bebas ongkir, COD, WIB, dan Tokopedia 12.12. Dari hasil pelabelan data, distribusi sentimen masyarakat untuk program promosi event belanja Tokopedia cenderung positif, Shopee cenderung negatif, dan sentimen masyarakat terhadap program promosi event belanja kedua marketplace didominasi oleh sentimen positif. Dari hasil pengujian, model yang menggunakan data set Shopee yaitu Skenario 3 dan Skenario 4 mendapat nilai akurasi tertinggi sebesar 72.12% dan 71.52%. Adapun dari hasil pencarian parameter terbaik menggunakan Grid Search meningkatkan nilai akurasi data set Tokopedia sebesar 1.44% dan data set Shopee sebesar 0.54%.","PeriodicalId":31793,"journal":{"name":"JEPIN Jurnal Edukasi dan Penelitian Informatika","volume":"25 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2022-12-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"JEPIN Jurnal Edukasi dan Penelitian Informatika","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.26418/jp.v8i3.56478","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Implementasi Support Vector Machine untuk Analisis Sentimen Terhadap Pengaruh Program Promosi Event Belanja pada Marketplace
Tren belanja online membuat berbagai brand marketplace di Indonesia menerapkan strategi pemasaran terbaiknya untuk menarik minat pelanggan, salah satunya program promosi event belanja. Shopee dan Tokopedia merupakan dua brand marketplace teratas di Indonesia dengan pengunjung terbanyak berdasarkan data Similarweb tahun 2021. Pengalaman pengguna seputar promosi event belanja marketplace berlangsung di media sosial, salah satunya Twitter. Tujuan dari penelitian ini adalah membangun model analisis sentimen yang mampu mengklasifikasikan tweets masyarakat terkait dengan program promosi event belanja yang dilakukan oleh Shopee dan Tokopedia. Penelitian ini menggunakan data tweets pada periode yang telah ditentukan. Rangkaian text preprocessing yang dilakukan adalah case folding, tokenizing, filtering, normalisasi kata, dan stemming. Pembobotan kata menggunakan TF-IDF, Support Vector Machine sebagai algoritma pengklasifikasian, Grid Search untuk mencari parameter optimal, dan K-Fold Cross Validation serta Confusion Matrix untuk validasi dan pengujian model. Berdasarkan hasil analisis dan observasi, penelitian ini mengidentifikasi event belanja pada Shopee tanggal 25, flash sale, gratis ongkir, COD, tanggal kembar, dan Shopee 12.12. Sedangkan untuk Tokopedia tanggal 25, kejar diskon, bebas ongkir, COD, WIB, dan Tokopedia 12.12. Dari hasil pelabelan data, distribusi sentimen masyarakat untuk program promosi event belanja Tokopedia cenderung positif, Shopee cenderung negatif, dan sentimen masyarakat terhadap program promosi event belanja kedua marketplace didominasi oleh sentimen positif. Dari hasil pengujian, model yang menggunakan data set Shopee yaitu Skenario 3 dan Skenario 4 mendapat nilai akurasi tertinggi sebesar 72.12% dan 71.52%. Adapun dari hasil pencarian parameter terbaik menggunakan Grid Search meningkatkan nilai akurasi data set Tokopedia sebesar 1.44% dan data set Shopee sebesar 0.54%.