利用带源域选择的在线加权自适应正则化方法减少RSVP任务中BCI校准的工作量

Dongrui Wu, Vernon J. Lawhern, Brent Lance
{"title":"利用带源域选择的在线加权自适应正则化方法减少RSVP任务中BCI校准的工作量","authors":"Dongrui Wu, Vernon J. Lawhern, Brent Lance","doi":"10.1109/ACII.2015.7344626","DOIUrl":null,"url":null,"abstract":"Rapid serial visual presentation based brain-computer interface (BCI) system relies on single-trial classification of event-related potentials. Because of large individual differences, some labeled subject-specific data are needed to calibrate the classifier for each new subject. This paper proposes an online weighted adaptation regularization (OwAR) algorithm to reduce the online calibration effort, and hence to increase the utility of the BCI system. We show that given the same number of labeled subject-specific training samples, OwAR can significantly improve the online calibration performance. In other words, given a desired classification accuracy, OwAR can significantly reduce the number of labeled subject-specific training samples. Furthermore, we also show that the computational cost of OwAR can be reduced by more than 50% by source domain selection, without a statistically significant sacrifice of classification performance.","PeriodicalId":6863,"journal":{"name":"2015 International Conference on Affective Computing and Intelligent Interaction (ACII)","volume":"1 1","pages":"567-573"},"PeriodicalIF":0.0000,"publicationDate":"2015-09-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"15","resultStr":"{\"title\":\"Reducing BCI calibration effort in RSVP tasks using online weighted adaptation regularization with source domain selection\",\"authors\":\"Dongrui Wu, Vernon J. Lawhern, Brent Lance\",\"doi\":\"10.1109/ACII.2015.7344626\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Rapid serial visual presentation based brain-computer interface (BCI) system relies on single-trial classification of event-related potentials. Because of large individual differences, some labeled subject-specific data are needed to calibrate the classifier for each new subject. This paper proposes an online weighted adaptation regularization (OwAR) algorithm to reduce the online calibration effort, and hence to increase the utility of the BCI system. We show that given the same number of labeled subject-specific training samples, OwAR can significantly improve the online calibration performance. In other words, given a desired classification accuracy, OwAR can significantly reduce the number of labeled subject-specific training samples. Furthermore, we also show that the computational cost of OwAR can be reduced by more than 50% by source domain selection, without a statistically significant sacrifice of classification performance.\",\"PeriodicalId\":6863,\"journal\":{\"name\":\"2015 International Conference on Affective Computing and Intelligent Interaction (ACII)\",\"volume\":\"1 1\",\"pages\":\"567-573\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2015-09-21\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"15\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2015 International Conference on Affective Computing and Intelligent Interaction (ACII)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ACII.2015.7344626\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2015 International Conference on Affective Computing and Intelligent Interaction (ACII)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ACII.2015.7344626","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 15

摘要

基于快速串行视觉呈现的脑机接口(BCI)系统依赖于事件相关电位的单次分类。由于个体差异很大,需要一些标记的特定主题数据来校准每个新主题的分类器。本文提出了一种在线加权自适应正则化(OwAR)算法,以减少在线校准的工作量,从而提高BCI系统的实用性。我们表明,给定相同数量的标记主题特定训练样本,OwAR可以显著提高在线校准性能。换句话说,给定期望的分类精度,OwAR可以显著减少标记的特定主题训练样本的数量。此外,我们还表明,通过源域选择可以将OwAR的计算成本降低50%以上,而不会牺牲统计上显著的分类性能。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Reducing BCI calibration effort in RSVP tasks using online weighted adaptation regularization with source domain selection
Rapid serial visual presentation based brain-computer interface (BCI) system relies on single-trial classification of event-related potentials. Because of large individual differences, some labeled subject-specific data are needed to calibrate the classifier for each new subject. This paper proposes an online weighted adaptation regularization (OwAR) algorithm to reduce the online calibration effort, and hence to increase the utility of the BCI system. We show that given the same number of labeled subject-specific training samples, OwAR can significantly improve the online calibration performance. In other words, given a desired classification accuracy, OwAR can significantly reduce the number of labeled subject-specific training samples. Furthermore, we also show that the computational cost of OwAR can be reduced by more than 50% by source domain selection, without a statistically significant sacrifice of classification performance.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Avatar and participant gender differences in the perception of uncanniness of virtual humans Neural conditional ordinal random fields for agreement level estimation Fundamental frequency modeling using wavelets for emotional voice conversion Bimodal feature-based fusion for real-time emotion recognition in a mobile context Harmony search for feature selection in speech emotion recognition
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1