{"title":"带氮化物捕获层的双多晶硅薄膜EEPROM的制备与表征","authors":"Yung-Chun Wu, Min-Feng Hung, Ji-Hong Chiang, Lun-Jyun Chen, Chiang-Hung Chen","doi":"10.1109/INEC.2010.5424704","DOIUrl":null,"url":null,"abstract":"This work demonstrates a novel twin poly-Si thin film transistor (TFT) EEPROM that utilizes oxide for gate dielectric and nitride for electron trapping layer (O/N twin poly-Si EEPROM). This EEPROM has superior reliability because its nitride for electron trapping layer provides a better program/erase efficiency and retention. For endurance and retention, the memory window can be maintained 2.5 V after 103 program and erase (P/E) cycles, and the memory window can be maintained 2.5 V after 104 s at 85 °C. This investigation explores its feasibility in future active matrix liquid crystal display (AMLCD) system-on-panel (SOP) and 3D stacked Flash memory applications.","PeriodicalId":6390,"journal":{"name":"2010 3rd International Nanoelectronics Conference (INEC)","volume":"14 1","pages":"635-636"},"PeriodicalIF":0.0000,"publicationDate":"2010-03-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Fabrication and characterization of twin poly-Si thin film transistors EEPROM with nitride trapping layer\",\"authors\":\"Yung-Chun Wu, Min-Feng Hung, Ji-Hong Chiang, Lun-Jyun Chen, Chiang-Hung Chen\",\"doi\":\"10.1109/INEC.2010.5424704\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This work demonstrates a novel twin poly-Si thin film transistor (TFT) EEPROM that utilizes oxide for gate dielectric and nitride for electron trapping layer (O/N twin poly-Si EEPROM). This EEPROM has superior reliability because its nitride for electron trapping layer provides a better program/erase efficiency and retention. For endurance and retention, the memory window can be maintained 2.5 V after 103 program and erase (P/E) cycles, and the memory window can be maintained 2.5 V after 104 s at 85 °C. This investigation explores its feasibility in future active matrix liquid crystal display (AMLCD) system-on-panel (SOP) and 3D stacked Flash memory applications.\",\"PeriodicalId\":6390,\"journal\":{\"name\":\"2010 3rd International Nanoelectronics Conference (INEC)\",\"volume\":\"14 1\",\"pages\":\"635-636\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2010-03-04\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2010 3rd International Nanoelectronics Conference (INEC)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/INEC.2010.5424704\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2010 3rd International Nanoelectronics Conference (INEC)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/INEC.2010.5424704","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Fabrication and characterization of twin poly-Si thin film transistors EEPROM with nitride trapping layer
This work demonstrates a novel twin poly-Si thin film transistor (TFT) EEPROM that utilizes oxide for gate dielectric and nitride for electron trapping layer (O/N twin poly-Si EEPROM). This EEPROM has superior reliability because its nitride for electron trapping layer provides a better program/erase efficiency and retention. For endurance and retention, the memory window can be maintained 2.5 V after 103 program and erase (P/E) cycles, and the memory window can be maintained 2.5 V after 104 s at 85 °C. This investigation explores its feasibility in future active matrix liquid crystal display (AMLCD) system-on-panel (SOP) and 3D stacked Flash memory applications.