设计对玩家留存率的影响:基于时变生存分析的方法

Thibault Allart, G. Levieux, M. Pierfitte, Agathe Guilloux, S. Natkin
{"title":"设计对玩家留存率的影响:基于时变生存分析的方法","authors":"Thibault Allart, G. Levieux, M. Pierfitte, Agathe Guilloux, S. Natkin","doi":"10.1109/CIG.2016.7860421","DOIUrl":null,"url":null,"abstract":"This paper proposes a method to help understanding the influence of a game design on player retention. Using Far Cry® 4 data, we illustrate how playtime measures can be used to identify time periods where players are more likely to stop playing. First, we show that a benchmark can easily be performed for every game available on Steam using publicly available data. Then, we introduce how survival analysis can help to model the influence of game variables on player retention. Game environment and player characteristics change over time and tracking systems already store those changes. But existing model which deals with time varying covariate cannot scale on huge datasets produced by video game monitoring. That is why we propose a model that can both deal with time varying covariates and is well suited for big datasets. As a given game variable can have a changing effect over time, we also include time-varying coefficients in our model. We used this survival analysis model to quantify the effect of Far Cry 4 weapons usage on player retention.","PeriodicalId":6594,"journal":{"name":"2016 IEEE Conference on Computational Intelligence and Games (CIG)","volume":"22 1","pages":"1-8"},"PeriodicalIF":0.0000,"publicationDate":"2016-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"9","resultStr":"{\"title\":\"Design influence on player retention: A method based on time varying survival analysis\",\"authors\":\"Thibault Allart, G. Levieux, M. Pierfitte, Agathe Guilloux, S. Natkin\",\"doi\":\"10.1109/CIG.2016.7860421\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This paper proposes a method to help understanding the influence of a game design on player retention. Using Far Cry® 4 data, we illustrate how playtime measures can be used to identify time periods where players are more likely to stop playing. First, we show that a benchmark can easily be performed for every game available on Steam using publicly available data. Then, we introduce how survival analysis can help to model the influence of game variables on player retention. Game environment and player characteristics change over time and tracking systems already store those changes. But existing model which deals with time varying covariate cannot scale on huge datasets produced by video game monitoring. That is why we propose a model that can both deal with time varying covariates and is well suited for big datasets. As a given game variable can have a changing effect over time, we also include time-varying coefficients in our model. We used this survival analysis model to quantify the effect of Far Cry 4 weapons usage on player retention.\",\"PeriodicalId\":6594,\"journal\":{\"name\":\"2016 IEEE Conference on Computational Intelligence and Games (CIG)\",\"volume\":\"22 1\",\"pages\":\"1-8\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2016-09-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"9\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2016 IEEE Conference on Computational Intelligence and Games (CIG)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/CIG.2016.7860421\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2016 IEEE Conference on Computational Intelligence and Games (CIG)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/CIG.2016.7860421","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 9

摘要

本文提出了一种方法来帮助理解游戏设计对玩家留存率的影响。利用《孤岛惊魂4》的数据,我们说明了如何使用游戏时间度量来确定玩家更有可能停止游戏的时间段。首先,我们展示了可以使用公开数据轻松地对Steam上的所有游戏执行基准测试。然后,我们将介绍生存分析如何帮助模拟游戏变量对玩家留存的影响。游戏环境和玩家特征会随着时间而改变,而追踪系统已经储存了这些变化。但是现有的处理时变协变量的模型不能适用于视频游戏监测产生的庞大数据集。这就是为什么我们提出了一个既可以处理时变协变量又非常适合大数据集的模型。因为给定的游戏变量会随着时间的推移而产生变化,所以我们在模型中也包含了时变系数。我们使用这种生存分析模型来量化《孤岛惊魂4》武器使用对玩家留存率的影响。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Design influence on player retention: A method based on time varying survival analysis
This paper proposes a method to help understanding the influence of a game design on player retention. Using Far Cry® 4 data, we illustrate how playtime measures can be used to identify time periods where players are more likely to stop playing. First, we show that a benchmark can easily be performed for every game available on Steam using publicly available data. Then, we introduce how survival analysis can help to model the influence of game variables on player retention. Game environment and player characteristics change over time and tracking systems already store those changes. But existing model which deals with time varying covariate cannot scale on huge datasets produced by video game monitoring. That is why we propose a model that can both deal with time varying covariates and is well suited for big datasets. As a given game variable can have a changing effect over time, we also include time-varying coefficients in our model. We used this survival analysis model to quantify the effect of Far Cry 4 weapons usage on player retention.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Human gesture classification by brute-force machine learning for exergaming in physiotherapy Evolving micro for 3D Real-Time Strategy games Constrained surprise search for content generation Design influence on player retention: A method based on time varying survival analysis Deep Q-learning using redundant outputs in visual doom
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1