{"title":"来自基于分布式账本的注册表的离线可验证数据","authors":"Stefan More, Jakob Heher, Clemens Walluschek","doi":"10.5220/0011327600003283","DOIUrl":null,"url":null,"abstract":": Trust management systems often use registries to authenticate data, or form trust decisions. Examples are revocation registries and trust status lists. By introducing distributed ledgers (DLs), it is also possible to create decentralized registries. A verifier then queries a node of the respective ledger, e.g., to retrieve trust status information during the verification of a credential. While this ensures trustworthy information, the process requires the verifier to be online and the ledger node available. Additionally, the connection from the verifier to the registry poses a privacy issue, as it leaks information about the user’s behavior. In this paper, we resolve these issues by extending existing ledger APIs to support results that are trustworthy even in an offline setting. We do this by introducing attestations of the ledger’s state, issued by ledger nodes, aggregatable into a collective attestation by all nodes. This attestation enables a user to prove the provenance of DL-based data to an offline verifier. Our approach is generic. So once deployed it serves as a basis for any use case with an offline verifier. We also provide an implementation for the Ethereum stack and evaluate it, demonstrating the practicability of our approach.","PeriodicalId":74779,"journal":{"name":"SECRYPT ... : proceedings of the International Conference on Security and Cryptography. International Conference on Security and Cryptography","volume":"25 1","pages":"687-693"},"PeriodicalIF":0.0000,"publicationDate":"2022-07-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Offline-verifiable Data from Distributed Ledger-based Registries\",\"authors\":\"Stefan More, Jakob Heher, Clemens Walluschek\",\"doi\":\"10.5220/0011327600003283\",\"DOIUrl\":null,\"url\":null,\"abstract\":\": Trust management systems often use registries to authenticate data, or form trust decisions. Examples are revocation registries and trust status lists. By introducing distributed ledgers (DLs), it is also possible to create decentralized registries. A verifier then queries a node of the respective ledger, e.g., to retrieve trust status information during the verification of a credential. While this ensures trustworthy information, the process requires the verifier to be online and the ledger node available. Additionally, the connection from the verifier to the registry poses a privacy issue, as it leaks information about the user’s behavior. In this paper, we resolve these issues by extending existing ledger APIs to support results that are trustworthy even in an offline setting. We do this by introducing attestations of the ledger’s state, issued by ledger nodes, aggregatable into a collective attestation by all nodes. This attestation enables a user to prove the provenance of DL-based data to an offline verifier. Our approach is generic. So once deployed it serves as a basis for any use case with an offline verifier. We also provide an implementation for the Ethereum stack and evaluate it, demonstrating the practicability of our approach.\",\"PeriodicalId\":74779,\"journal\":{\"name\":\"SECRYPT ... : proceedings of the International Conference on Security and Cryptography. International Conference on Security and Cryptography\",\"volume\":\"25 1\",\"pages\":\"687-693\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2022-07-19\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"SECRYPT ... : proceedings of the International Conference on Security and Cryptography. International Conference on Security and Cryptography\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.5220/0011327600003283\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"SECRYPT ... : proceedings of the International Conference on Security and Cryptography. International Conference on Security and Cryptography","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.5220/0011327600003283","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Offline-verifiable Data from Distributed Ledger-based Registries
: Trust management systems often use registries to authenticate data, or form trust decisions. Examples are revocation registries and trust status lists. By introducing distributed ledgers (DLs), it is also possible to create decentralized registries. A verifier then queries a node of the respective ledger, e.g., to retrieve trust status information during the verification of a credential. While this ensures trustworthy information, the process requires the verifier to be online and the ledger node available. Additionally, the connection from the verifier to the registry poses a privacy issue, as it leaks information about the user’s behavior. In this paper, we resolve these issues by extending existing ledger APIs to support results that are trustworthy even in an offline setting. We do this by introducing attestations of the ledger’s state, issued by ledger nodes, aggregatable into a collective attestation by all nodes. This attestation enables a user to prove the provenance of DL-based data to an offline verifier. Our approach is generic. So once deployed it serves as a basis for any use case with an offline verifier. We also provide an implementation for the Ethereum stack and evaluate it, demonstrating the practicability of our approach.