{"title":"彩色图像分割","authors":"Yining Deng, B. S. Manjunath, H. Shin","doi":"10.1109/CVPR.1999.784719","DOIUrl":null,"url":null,"abstract":"In this work, a new approach to fully automatic color image segmentation, called JSEG, is presented. First, colors in the image are quantized to several representing classes that can be used to differentiate regions in the image. Then, image pixel colors are replaced by their corresponding color class labels, thus forming a class-map of the image. A criterion for \"good\" segmentation using this class-map is proposed. Applying the criterion to local windows in the class-map results in the \"J-image\", in which high and low values correspond to possible region boundaries and region centers, respectively. A region growing method is then used to segment the image based on the multi-scale J-images. Experiments show that JSEG provides good segmentation results on a variety of images.","PeriodicalId":20644,"journal":{"name":"Proceedings. 1999 IEEE Computer Society Conference on Computer Vision and Pattern Recognition (Cat. No PR00149)","volume":"11 1","pages":"446-451 Vol. 2"},"PeriodicalIF":0.0000,"publicationDate":"1999-06-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"687","resultStr":"{\"title\":\"Color image segmentation\",\"authors\":\"Yining Deng, B. S. Manjunath, H. Shin\",\"doi\":\"10.1109/CVPR.1999.784719\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this work, a new approach to fully automatic color image segmentation, called JSEG, is presented. First, colors in the image are quantized to several representing classes that can be used to differentiate regions in the image. Then, image pixel colors are replaced by their corresponding color class labels, thus forming a class-map of the image. A criterion for \\\"good\\\" segmentation using this class-map is proposed. Applying the criterion to local windows in the class-map results in the \\\"J-image\\\", in which high and low values correspond to possible region boundaries and region centers, respectively. A region growing method is then used to segment the image based on the multi-scale J-images. Experiments show that JSEG provides good segmentation results on a variety of images.\",\"PeriodicalId\":20644,\"journal\":{\"name\":\"Proceedings. 1999 IEEE Computer Society Conference on Computer Vision and Pattern Recognition (Cat. No PR00149)\",\"volume\":\"11 1\",\"pages\":\"446-451 Vol. 2\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"1999-06-23\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"687\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings. 1999 IEEE Computer Society Conference on Computer Vision and Pattern Recognition (Cat. No PR00149)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/CVPR.1999.784719\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings. 1999 IEEE Computer Society Conference on Computer Vision and Pattern Recognition (Cat. No PR00149)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/CVPR.1999.784719","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 687

摘要

在这项工作中,提出了一种新的全自动彩色图像分割方法——JSEG。首先,图像中的颜色被量化为几个代表类,可以用来区分图像中的区域。然后,将图像像素颜色替换为其对应的颜色类标签,从而形成图像的类映射。提出了使用类映射进行“良好”分割的标准。将该准则应用于类图的局部窗口得到“J-image”,其中高值和低值分别对应可能的区域边界和区域中心。然后在多尺度j图像的基础上,采用区域增长方法对图像进行分割。实验表明,JSEG在多种图像上都有很好的分割效果。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Color image segmentation
In this work, a new approach to fully automatic color image segmentation, called JSEG, is presented. First, colors in the image are quantized to several representing classes that can be used to differentiate regions in the image. Then, image pixel colors are replaced by their corresponding color class labels, thus forming a class-map of the image. A criterion for "good" segmentation using this class-map is proposed. Applying the criterion to local windows in the class-map results in the "J-image", in which high and low values correspond to possible region boundaries and region centers, respectively. A region growing method is then used to segment the image based on the multi-scale J-images. Experiments show that JSEG provides good segmentation results on a variety of images.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Visual signature verification using affine arc-length A novel Bayesian method for fitting parametric and non-parametric models to noisy data Material classification for 3D objects in aerial hyperspectral images Deformable template and distribution mixture-based data modeling for the endocardial contour tracking in an echographic sequence Applying perceptual grouping to content-based image retrieval: building images
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1