Mebarka Imane Benguechoua, K. Benarous, Ziyad Benahmed, Sarah Boukhalkhal, Artur M. S. Silva, M. Yousfi
{"title":"大西洋黄连木的奎宁酸和双二食酸。叶提取物对SARS-CoV-2主要蛋白酶和RNA依赖性RNA聚合酶的有效双效抑制剂","authors":"Mebarka Imane Benguechoua, K. Benarous, Ziyad Benahmed, Sarah Boukhalkhal, Artur M. S. Silva, M. Yousfi","doi":"10.2174/1573409918666220616121449","DOIUrl":null,"url":null,"abstract":"BACKGROUND\nThrough this study, the Chemical composition realized by UHPLC-DAD-ESI-MSn allowed the detection of different phenolic compounds groups from Pistacia atlantica Desf. leaves extracts. We studied the inhibition of main protease (CL3 Mpro) and RNA-dependent RNA polymerase (RdRp) of the SARS-CoV-2 by the identified molecules through molecular docking.\n\n\nOBJECTIVE\nThe objective of this study is to identify compounds from Pistacia atlantica Desf. leaves extracts, which might have anti-viral effects.\n\n\nMETHODS\nChemical composition realized by UHPLC-DAD-ESI-MSn, the inhibition of main protease (CL3 Mpro) and RNA-dependent RNA polymerase (RdRp) of the SARS-CoV-2 is studied using molecular docking with Autodock Vina software. ADMET analysis was carried out.\n\n\nRESULTS\nThe identified compounds are quinic acid, digallic acid, galloylquinic acid, gallic acid, trigallic acid, digalloylquinic acids, trigalloylquinic acids and methyl gallate; digallic and quinic acids are the best inhibitors. Digallic acid had binding affinity energy (BAE) of -8.2 kcal/mol, and Ki of 1µM for the CL3 Mpro, Ki of 0.62 mM for the RdRp. Quinic acid showed Ki of 4.6 mM, recorded for both enzymes. Through ADMET analysis, we have found that the two molecules are good drugs candidate.\n\n\nCONCLUSION\nThis is the first time that a group of identified compounds from Pistacia atlantica Desf. leaves is studied for their potential activity against the novel virus by inhibiting two key enzymes in its life cycle, and no further studies have been published in this context.","PeriodicalId":10886,"journal":{"name":"Current computer-aided drug design","volume":"7 1","pages":""},"PeriodicalIF":1.5000,"publicationDate":"2022-06-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Quinic and digallic acids from Pistacia atlantica Desf. leaves extracts as potent dual effect inhibitors against main protease and RNA-dependent RNA polymerase of SARS-CoV-2.\",\"authors\":\"Mebarka Imane Benguechoua, K. Benarous, Ziyad Benahmed, Sarah Boukhalkhal, Artur M. S. Silva, M. Yousfi\",\"doi\":\"10.2174/1573409918666220616121449\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"BACKGROUND\\nThrough this study, the Chemical composition realized by UHPLC-DAD-ESI-MSn allowed the detection of different phenolic compounds groups from Pistacia atlantica Desf. leaves extracts. We studied the inhibition of main protease (CL3 Mpro) and RNA-dependent RNA polymerase (RdRp) of the SARS-CoV-2 by the identified molecules through molecular docking.\\n\\n\\nOBJECTIVE\\nThe objective of this study is to identify compounds from Pistacia atlantica Desf. leaves extracts, which might have anti-viral effects.\\n\\n\\nMETHODS\\nChemical composition realized by UHPLC-DAD-ESI-MSn, the inhibition of main protease (CL3 Mpro) and RNA-dependent RNA polymerase (RdRp) of the SARS-CoV-2 is studied using molecular docking with Autodock Vina software. ADMET analysis was carried out.\\n\\n\\nRESULTS\\nThe identified compounds are quinic acid, digallic acid, galloylquinic acid, gallic acid, trigallic acid, digalloylquinic acids, trigalloylquinic acids and methyl gallate; digallic and quinic acids are the best inhibitors. Digallic acid had binding affinity energy (BAE) of -8.2 kcal/mol, and Ki of 1µM for the CL3 Mpro, Ki of 0.62 mM for the RdRp. Quinic acid showed Ki of 4.6 mM, recorded for both enzymes. Through ADMET analysis, we have found that the two molecules are good drugs candidate.\\n\\n\\nCONCLUSION\\nThis is the first time that a group of identified compounds from Pistacia atlantica Desf. leaves is studied for their potential activity against the novel virus by inhibiting two key enzymes in its life cycle, and no further studies have been published in this context.\",\"PeriodicalId\":10886,\"journal\":{\"name\":\"Current computer-aided drug design\",\"volume\":\"7 1\",\"pages\":\"\"},\"PeriodicalIF\":1.5000,\"publicationDate\":\"2022-06-16\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Current computer-aided drug design\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://doi.org/10.2174/1573409918666220616121449\",\"RegionNum\":4,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"CHEMISTRY, MEDICINAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Current computer-aided drug design","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.2174/1573409918666220616121449","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"CHEMISTRY, MEDICINAL","Score":null,"Total":0}
Quinic and digallic acids from Pistacia atlantica Desf. leaves extracts as potent dual effect inhibitors against main protease and RNA-dependent RNA polymerase of SARS-CoV-2.
BACKGROUND
Through this study, the Chemical composition realized by UHPLC-DAD-ESI-MSn allowed the detection of different phenolic compounds groups from Pistacia atlantica Desf. leaves extracts. We studied the inhibition of main protease (CL3 Mpro) and RNA-dependent RNA polymerase (RdRp) of the SARS-CoV-2 by the identified molecules through molecular docking.
OBJECTIVE
The objective of this study is to identify compounds from Pistacia atlantica Desf. leaves extracts, which might have anti-viral effects.
METHODS
Chemical composition realized by UHPLC-DAD-ESI-MSn, the inhibition of main protease (CL3 Mpro) and RNA-dependent RNA polymerase (RdRp) of the SARS-CoV-2 is studied using molecular docking with Autodock Vina software. ADMET analysis was carried out.
RESULTS
The identified compounds are quinic acid, digallic acid, galloylquinic acid, gallic acid, trigallic acid, digalloylquinic acids, trigalloylquinic acids and methyl gallate; digallic and quinic acids are the best inhibitors. Digallic acid had binding affinity energy (BAE) of -8.2 kcal/mol, and Ki of 1µM for the CL3 Mpro, Ki of 0.62 mM for the RdRp. Quinic acid showed Ki of 4.6 mM, recorded for both enzymes. Through ADMET analysis, we have found that the two molecules are good drugs candidate.
CONCLUSION
This is the first time that a group of identified compounds from Pistacia atlantica Desf. leaves is studied for their potential activity against the novel virus by inhibiting two key enzymes in its life cycle, and no further studies have been published in this context.
期刊介绍:
Aims & Scope
Current Computer-Aided Drug Design aims to publish all the latest developments in drug design based on computational techniques. The field of computer-aided drug design has had extensive impact in the area of drug design.
Current Computer-Aided Drug Design is an essential journal for all medicinal chemists who wish to be kept informed and up-to-date with all the latest and important developments in computer-aided methodologies and their applications in drug discovery. Each issue contains a series of timely, in-depth reviews, original research articles and letter articles written by leaders in the field, covering a range of computational techniques for drug design, screening, ADME studies, theoretical chemistry; computational chemistry; computer and molecular graphics; molecular modeling; protein engineering; drug design; expert systems; general structure-property relationships; molecular dynamics; chemical database development and usage etc., providing excellent rationales for drug development.