社会生态数据的广义表示和映射:从数据库中释放数据

S. Jensen, Beth Plale, Xiaozhong Liu, Miao Chen, David B. Leake, Julie England
{"title":"社会生态数据的广义表示和映射:从数据库中释放数据","authors":"S. Jensen, Beth Plale, Xiaozhong Liu, Miao Chen, David B. Leake, Julie England","doi":"10.1109/eScience.2012.6404486","DOIUrl":null,"url":null,"abstract":"Scientific discovery increasingly requires collaboration between scientific sub-domains that often have different representations for their data. To bridge gaps between varying domain representations, researchers are developing metadata and semantic representations meaningful to broader communities. Through exploiting these representations we propose a logical model and architecture by which cross-domain researchers can more easily discover, use, and eventually archive, data. In this paper we present an architecture, intermediate data model, and methodology for mapping diverse social-ecological data sources stored in relational databases to a common representation, and for classifying textual data using machine learning. The results are visualized through client views that are built against the general logical model, and applied against a longitudinal database from social-ecological research.","PeriodicalId":6364,"journal":{"name":"2012 IEEE 8th International Conference on E-Science","volume":"52 1","pages":"1-8"},"PeriodicalIF":0.0000,"publicationDate":"2012-10-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"Generalized representation and mapping for social-ecological data: Freeing data from the database\",\"authors\":\"S. Jensen, Beth Plale, Xiaozhong Liu, Miao Chen, David B. Leake, Julie England\",\"doi\":\"10.1109/eScience.2012.6404486\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Scientific discovery increasingly requires collaboration between scientific sub-domains that often have different representations for their data. To bridge gaps between varying domain representations, researchers are developing metadata and semantic representations meaningful to broader communities. Through exploiting these representations we propose a logical model and architecture by which cross-domain researchers can more easily discover, use, and eventually archive, data. In this paper we present an architecture, intermediate data model, and methodology for mapping diverse social-ecological data sources stored in relational databases to a common representation, and for classifying textual data using machine learning. The results are visualized through client views that are built against the general logical model, and applied against a longitudinal database from social-ecological research.\",\"PeriodicalId\":6364,\"journal\":{\"name\":\"2012 IEEE 8th International Conference on E-Science\",\"volume\":\"52 1\",\"pages\":\"1-8\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2012-10-08\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2012 IEEE 8th International Conference on E-Science\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/eScience.2012.6404486\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2012 IEEE 8th International Conference on E-Science","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/eScience.2012.6404486","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

摘要

科学发现越来越需要科学子领域之间的协作,这些子领域通常对其数据有不同的表示。为了弥合不同领域表示之间的差距,研究人员正在开发对更广泛的社区有意义的元数据和语义表示。通过利用这些表示,我们提出了一个逻辑模型和架构,通过该模型和架构,跨领域研究人员可以更容易地发现、使用并最终存档数据。在本文中,我们提出了一种架构、中间数据模型和方法,用于将存储在关系数据库中的各种社会生态数据源映射到一个共同的表示,并使用机器学习对文本数据进行分类。结果通过基于一般逻辑模型构建的客户视图可视化,并应用于来自社会生态研究的纵向数据库。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Generalized representation and mapping for social-ecological data: Freeing data from the database
Scientific discovery increasingly requires collaboration between scientific sub-domains that often have different representations for their data. To bridge gaps between varying domain representations, researchers are developing metadata and semantic representations meaningful to broader communities. Through exploiting these representations we propose a logical model and architecture by which cross-domain researchers can more easily discover, use, and eventually archive, data. In this paper we present an architecture, intermediate data model, and methodology for mapping diverse social-ecological data sources stored in relational databases to a common representation, and for classifying textual data using machine learning. The results are visualized through client views that are built against the general logical model, and applied against a longitudinal database from social-ecological research.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Scientific Workflow Interchanging through Patterns: Reversals and Lessons Learned Shape Analysis Using the Spectral Graph Wavelet Transform Provenance analysis: Towards quality provenance Fast confidential search for bio-medical data using Bloom filters and Homomorphic Cryptography Calibration of watershed models using cloud computing
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1