{"title":"猫中耳有限元模型中包括镫骨关节灵活性的影响","authors":"S.S. Ghosh, W. Funnell","doi":"10.1109/IEMBS.1995.579765","DOIUrl":null,"url":null,"abstract":"An existing finite-element model of the cat middle ear was modified to include a shell representation of the incudostapedial joint. Joint stiffness was varied from very small to very large and the results show that both out-of-plane and in-plane displacements become smaller as the joint becomes more flexible. In-plane rotations remain significant at all stiffness values and tilting varies considerably in magnitude and direction as a function of stiffness.","PeriodicalId":20509,"journal":{"name":"Proceedings of 17th International Conference of the Engineering in Medicine and Biology Society","volume":"33 1","pages":"1437-1438 vol.2"},"PeriodicalIF":0.0000,"publicationDate":"1995-09-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"4","resultStr":"{\"title\":\"On the effects of incudostapedial joint flexibility in a finite-element model of the cat middle ear\",\"authors\":\"S.S. Ghosh, W. Funnell\",\"doi\":\"10.1109/IEMBS.1995.579765\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"An existing finite-element model of the cat middle ear was modified to include a shell representation of the incudostapedial joint. Joint stiffness was varied from very small to very large and the results show that both out-of-plane and in-plane displacements become smaller as the joint becomes more flexible. In-plane rotations remain significant at all stiffness values and tilting varies considerably in magnitude and direction as a function of stiffness.\",\"PeriodicalId\":20509,\"journal\":{\"name\":\"Proceedings of 17th International Conference of the Engineering in Medicine and Biology Society\",\"volume\":\"33 1\",\"pages\":\"1437-1438 vol.2\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"1995-09-20\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"4\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings of 17th International Conference of the Engineering in Medicine and Biology Society\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/IEMBS.1995.579765\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of 17th International Conference of the Engineering in Medicine and Biology Society","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/IEMBS.1995.579765","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
On the effects of incudostapedial joint flexibility in a finite-element model of the cat middle ear
An existing finite-element model of the cat middle ear was modified to include a shell representation of the incudostapedial joint. Joint stiffness was varied from very small to very large and the results show that both out-of-plane and in-plane displacements become smaller as the joint becomes more flexible. In-plane rotations remain significant at all stiffness values and tilting varies considerably in magnitude and direction as a function of stiffness.