D. Wicaksono, G. Pandraud, G. Craciun, J. Vincent, P. French
{"title":"受昆虫钟形感受器启发的微机械仿生应变传感器的制造和初步表征结果","authors":"D. Wicaksono, G. Pandraud, G. Craciun, J. Vincent, P. French","doi":"10.1109/ICSENS.2004.1426221","DOIUrl":null,"url":null,"abstract":"In this report, we present our initial fabrication and characterisation results of a new micromachined biomimetic strain sensor. The new strain sensor is structurally inspired from the natural strain sensor found in insects, commonly called Campaniform sensillum. The high-sensitivity strain sensing capability of Campaniform sensillum is among other things due to its hole-structure, as well as its membrane-in-recess structural features. From previous works in continuum macromechanics, it is widely known that hole-structure amplifies stress and mostly becomes a crack starting point. We fabricated for the first time micromachined Si-based strain-sensing structures inspired from these structural features of Campaniform sensillum. In our initial optical characterisation results of these biomimetic Si-based microstructures, it is confirmed that the hole structural feature amplifies and concentrates strain. Thus, further application for a strain-sensing device is feasible.","PeriodicalId":20476,"journal":{"name":"Proceedings of IEEE Sensors, 2004.","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2004-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"7","resultStr":"{\"title\":\"Fabrication and initial characterisation results of a micromachined biomimetic strain sensor inspired from the Campaniform sensillum of insects\",\"authors\":\"D. Wicaksono, G. Pandraud, G. Craciun, J. Vincent, P. French\",\"doi\":\"10.1109/ICSENS.2004.1426221\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this report, we present our initial fabrication and characterisation results of a new micromachined biomimetic strain sensor. The new strain sensor is structurally inspired from the natural strain sensor found in insects, commonly called Campaniform sensillum. The high-sensitivity strain sensing capability of Campaniform sensillum is among other things due to its hole-structure, as well as its membrane-in-recess structural features. From previous works in continuum macromechanics, it is widely known that hole-structure amplifies stress and mostly becomes a crack starting point. We fabricated for the first time micromachined Si-based strain-sensing structures inspired from these structural features of Campaniform sensillum. In our initial optical characterisation results of these biomimetic Si-based microstructures, it is confirmed that the hole structural feature amplifies and concentrates strain. Thus, further application for a strain-sensing device is feasible.\",\"PeriodicalId\":20476,\"journal\":{\"name\":\"Proceedings of IEEE Sensors, 2004.\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2004-12-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"7\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings of IEEE Sensors, 2004.\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICSENS.2004.1426221\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of IEEE Sensors, 2004.","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICSENS.2004.1426221","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Fabrication and initial characterisation results of a micromachined biomimetic strain sensor inspired from the Campaniform sensillum of insects
In this report, we present our initial fabrication and characterisation results of a new micromachined biomimetic strain sensor. The new strain sensor is structurally inspired from the natural strain sensor found in insects, commonly called Campaniform sensillum. The high-sensitivity strain sensing capability of Campaniform sensillum is among other things due to its hole-structure, as well as its membrane-in-recess structural features. From previous works in continuum macromechanics, it is widely known that hole-structure amplifies stress and mostly becomes a crack starting point. We fabricated for the first time micromachined Si-based strain-sensing structures inspired from these structural features of Campaniform sensillum. In our initial optical characterisation results of these biomimetic Si-based microstructures, it is confirmed that the hole structural feature amplifies and concentrates strain. Thus, further application for a strain-sensing device is feasible.