{"title":"杂化硫热化学制氢工艺的发展现状","authors":"W. Summers","doi":"10.1787/9789264087156-26-EN","DOIUrl":null,"url":null,"abstract":"The DOE Nuclear Hydrogen Initiative has selected two sulphur cycles, the sulphur iodine (SI) cycle and the HyS process, as the first priority thermochemical processes for development and potential demonstration with the next generation nuclear plant. Both cycles share a common high temperature reaction step – the catalytic thermal decomposition of sulphuric acid. However, they are fundamentally different in the methods used for the hydrogen production step.","PeriodicalId":88069,"journal":{"name":"Nuclear science abstracts","volume":"33 1","pages":"223-223"},"PeriodicalIF":0.0000,"publicationDate":"2010-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Development status of the hybrid sulphur thermochemical hydrogen production process\",\"authors\":\"W. Summers\",\"doi\":\"10.1787/9789264087156-26-EN\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The DOE Nuclear Hydrogen Initiative has selected two sulphur cycles, the sulphur iodine (SI) cycle and the HyS process, as the first priority thermochemical processes for development and potential demonstration with the next generation nuclear plant. Both cycles share a common high temperature reaction step – the catalytic thermal decomposition of sulphuric acid. However, they are fundamentally different in the methods used for the hydrogen production step.\",\"PeriodicalId\":88069,\"journal\":{\"name\":\"Nuclear science abstracts\",\"volume\":\"33 1\",\"pages\":\"223-223\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2010-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Nuclear science abstracts\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1787/9789264087156-26-EN\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Nuclear science abstracts","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1787/9789264087156-26-EN","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Development status of the hybrid sulphur thermochemical hydrogen production process
The DOE Nuclear Hydrogen Initiative has selected two sulphur cycles, the sulphur iodine (SI) cycle and the HyS process, as the first priority thermochemical processes for development and potential demonstration with the next generation nuclear plant. Both cycles share a common high temperature reaction step – the catalytic thermal decomposition of sulphuric acid. However, they are fundamentally different in the methods used for the hydrogen production step.