二元气体混合中空纤维膜模块的计算流体动力学分析

IF 2.7 4区 环境科学与生态学 Q3 ENERGY & FUELS Greenhouse Gases: Science and Technology Pub Date : 2023-05-22 DOI:10.3390/gases3020005
Salman Qadir, M. Ahsan, A. Hussain
{"title":"二元气体混合中空纤维膜模块的计算流体动力学分析","authors":"Salman Qadir, M. Ahsan, A. Hussain","doi":"10.3390/gases3020005","DOIUrl":null,"url":null,"abstract":"The membrane gas separation process has gained significant attention using the computational fluid dynamics (CFD) technique. This study considered the CFD method to find gas concentration profiles in a hollow fiber membrane (HFM) module to separate the binary gas mixture. The membrane was considered with a fiber thickness where each component’s mass fluxes could be obtained based on the local partial pressures, solubility, diffusion, and the membrane’s selectivity. COMSOL Multiphysics was used to solve the numerical solution at corresponding operating conditions and results were compared to experimental data. The two different mixtures, CO2/CH4 and N2/O2, were investigated to obtain concentration gradient and mass flux profiles of CO2 and O2 species in an axial direction. This study allows assessing the feed pressure’s impact on the HFM system’s overall performance. These results demonstrate that the increment in feed pressures decreased the membrane system’s separation performance. The impact of hollow fiber length indicates that increasing the active fiber length has a higher effective mass transfer region but dilutes the permeate-side purities of O2 (46% to 28%) and CO2 (93% to 73%). The results show that increasing inlet pressure and a higher concentration gradient resulted in higher flux through the membrane.","PeriodicalId":12796,"journal":{"name":"Greenhouse Gases: Science and Technology","volume":"1 1","pages":""},"PeriodicalIF":2.7000,"publicationDate":"2023-05-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Computational Fluid Dynamics Analysis of a Hollow Fiber Membrane Module for Binary Gas Mixture\",\"authors\":\"Salman Qadir, M. Ahsan, A. Hussain\",\"doi\":\"10.3390/gases3020005\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The membrane gas separation process has gained significant attention using the computational fluid dynamics (CFD) technique. This study considered the CFD method to find gas concentration profiles in a hollow fiber membrane (HFM) module to separate the binary gas mixture. The membrane was considered with a fiber thickness where each component’s mass fluxes could be obtained based on the local partial pressures, solubility, diffusion, and the membrane’s selectivity. COMSOL Multiphysics was used to solve the numerical solution at corresponding operating conditions and results were compared to experimental data. The two different mixtures, CO2/CH4 and N2/O2, were investigated to obtain concentration gradient and mass flux profiles of CO2 and O2 species in an axial direction. This study allows assessing the feed pressure’s impact on the HFM system’s overall performance. These results demonstrate that the increment in feed pressures decreased the membrane system’s separation performance. The impact of hollow fiber length indicates that increasing the active fiber length has a higher effective mass transfer region but dilutes the permeate-side purities of O2 (46% to 28%) and CO2 (93% to 73%). The results show that increasing inlet pressure and a higher concentration gradient resulted in higher flux through the membrane.\",\"PeriodicalId\":12796,\"journal\":{\"name\":\"Greenhouse Gases: Science and Technology\",\"volume\":\"1 1\",\"pages\":\"\"},\"PeriodicalIF\":2.7000,\"publicationDate\":\"2023-05-22\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Greenhouse Gases: Science and Technology\",\"FirstCategoryId\":\"93\",\"ListUrlMain\":\"https://doi.org/10.3390/gases3020005\",\"RegionNum\":4,\"RegionCategory\":\"环境科学与生态学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"ENERGY & FUELS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Greenhouse Gases: Science and Technology","FirstCategoryId":"93","ListUrlMain":"https://doi.org/10.3390/gases3020005","RegionNum":4,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ENERGY & FUELS","Score":null,"Total":0}
引用次数: 1

摘要

利用计算流体力学(CFD)技术研究膜气体分离过程已引起广泛关注。本研究采用CFD方法在中空纤维膜(HFM)模块中寻找气体浓度分布,以分离二元气体混合物。膜被认为具有纤维厚度,其中每个组分的质量通量可以根据局部分压、溶解度、扩散和膜的选择性得到。利用COMSOL Multiphysics对相应工况下的数值解进行了求解,并与实验数据进行了比较。研究了CO2/CH4和N2/O2两种不同混合物,得到了CO2和O2在轴向上的浓度梯度和质量通量分布。该研究允许评估进料压力对HFM系统整体性能的影响。结果表明,进料压力的增加降低了膜系统的分离性能。中空纤维长度的影响表明,增加活性纤维长度会增大有效传质面积,但会稀释O2(46% ~ 28%)和CO2(93% ~ 73%)的渗透侧纯度。结果表明,进口压力增大,浓度梯度增大,通过膜的通量增大。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Computational Fluid Dynamics Analysis of a Hollow Fiber Membrane Module for Binary Gas Mixture
The membrane gas separation process has gained significant attention using the computational fluid dynamics (CFD) technique. This study considered the CFD method to find gas concentration profiles in a hollow fiber membrane (HFM) module to separate the binary gas mixture. The membrane was considered with a fiber thickness where each component’s mass fluxes could be obtained based on the local partial pressures, solubility, diffusion, and the membrane’s selectivity. COMSOL Multiphysics was used to solve the numerical solution at corresponding operating conditions and results were compared to experimental data. The two different mixtures, CO2/CH4 and N2/O2, were investigated to obtain concentration gradient and mass flux profiles of CO2 and O2 species in an axial direction. This study allows assessing the feed pressure’s impact on the HFM system’s overall performance. These results demonstrate that the increment in feed pressures decreased the membrane system’s separation performance. The impact of hollow fiber length indicates that increasing the active fiber length has a higher effective mass transfer region but dilutes the permeate-side purities of O2 (46% to 28%) and CO2 (93% to 73%). The results show that increasing inlet pressure and a higher concentration gradient resulted in higher flux through the membrane.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Greenhouse Gases: Science and Technology
Greenhouse Gases: Science and Technology ENERGY & FUELS-ENGINEERING, ENVIRONMENTAL
CiteScore
4.90
自引率
4.50%
发文量
55
审稿时长
3 months
期刊介绍: Greenhouse Gases: Science and Technology is a new online-only scientific journal dedicated to the management of greenhouse gases. The journal will focus on methods for carbon capture and storage (CCS), as well as utilization of carbon dioxide (CO2) as a feedstock for fuels and chemicals. GHG will also provide insight into strategies to mitigate emissions of other greenhouse gases. Significant advances will be explored in critical reviews, commentary articles and short communications of broad interest. In addition, the journal will offer analyses of relevant economic and political issues, industry developments and case studies. Greenhouse Gases: Science and Technology is an exciting new online-only journal published as a co-operative venture of the SCI (Society of Chemical Industry) and John Wiley & Sons, Ltd
期刊最新文献
Issue Information Core-flooding experiments of various concentrations of CO2/N2 mixture in different rocks: II. Effect of rock properties on residual water Development of a multicomponent counter-current flow model to evaluate the impact of oxygen and water vapor on CO2 removal performance in a hollow fiber membrane contactor Invasion percolation & basin modelling for CCS site screening and characterization A study on degradation and CO2 capture performance of aqueous amino acid salts for direct air capture applications
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1