预测不同剪切速率下聚合物表观粘度的扩展粘弹性模型

Mursal Zeynalli, Emad W. Al-Shalabi, W. Alameri
{"title":"预测不同剪切速率下聚合物表观粘度的扩展粘弹性模型","authors":"Mursal Zeynalli, Emad W. Al-Shalabi, W. Alameri","doi":"10.2118/206010-ms","DOIUrl":null,"url":null,"abstract":"\n Polymer flooding is one of the most commonly used chemical EOR methods. Conventionally, this technique was believed to improve macroscopic sweep efficiency by sweeping only bypassed oil. Nevertheless, recently it has been found that polymers exhibiting viscoelastic behavior in the porous medium can also improve microscopic displacement efficiency resulting in higher additional oil recovery. Therefore, an accurate prediction of the complex rheological response of polymers is crucial to obtain a proper estimation of incremental oil to polymer flooding. In this paper, a novel viscoelastic model is proposed to comprehensively analyze the polymer rheological behavior in porous media.\n The proposed viscoelastic model is considered an extension of the unified apparent viscosity model provided in the literature and is termed as extended unified viscosity model (E-UVM). The main advantage of the proposed model is its ability to capture the polymer mechanical degradation at ultimate shear rates primarily observed near wellbores. Furthermore, the fitting parameters used in the model were correlated to rock and polymer properties, significantly reducing the need for time-consuming coreflooding tests for future polymer screening works. Moreover, the extended viscoelastic model was implemented in MATLAB Reservoir Simulation Toolbox (MRST) and verified against the original shear model existing in the simulator. It was found that implementing the viscosity model in MRST might be more accurate and practical than the original method. In addition, the comparison between various viscosity models proposed earlier and E-UVM in the reservoir simulator revealed that the latter model could yield more reliable oil recovery predictions since it accommodates the mechanical degradation of polymers. This study presents a novel viscoelastic model that is more comprehensive and representative as opposed to other models in the literature.","PeriodicalId":10896,"journal":{"name":"Day 1 Tue, September 21, 2021","volume":"233 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2021-09-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"An Extended Viscoelastic Model for Predicting Polymer Apparent Viscosity at Different Shear Rates\",\"authors\":\"Mursal Zeynalli, Emad W. Al-Shalabi, W. Alameri\",\"doi\":\"10.2118/206010-ms\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"\\n Polymer flooding is one of the most commonly used chemical EOR methods. Conventionally, this technique was believed to improve macroscopic sweep efficiency by sweeping only bypassed oil. Nevertheless, recently it has been found that polymers exhibiting viscoelastic behavior in the porous medium can also improve microscopic displacement efficiency resulting in higher additional oil recovery. Therefore, an accurate prediction of the complex rheological response of polymers is crucial to obtain a proper estimation of incremental oil to polymer flooding. In this paper, a novel viscoelastic model is proposed to comprehensively analyze the polymer rheological behavior in porous media.\\n The proposed viscoelastic model is considered an extension of the unified apparent viscosity model provided in the literature and is termed as extended unified viscosity model (E-UVM). The main advantage of the proposed model is its ability to capture the polymer mechanical degradation at ultimate shear rates primarily observed near wellbores. Furthermore, the fitting parameters used in the model were correlated to rock and polymer properties, significantly reducing the need for time-consuming coreflooding tests for future polymer screening works. Moreover, the extended viscoelastic model was implemented in MATLAB Reservoir Simulation Toolbox (MRST) and verified against the original shear model existing in the simulator. It was found that implementing the viscosity model in MRST might be more accurate and practical than the original method. In addition, the comparison between various viscosity models proposed earlier and E-UVM in the reservoir simulator revealed that the latter model could yield more reliable oil recovery predictions since it accommodates the mechanical degradation of polymers. This study presents a novel viscoelastic model that is more comprehensive and representative as opposed to other models in the literature.\",\"PeriodicalId\":10896,\"journal\":{\"name\":\"Day 1 Tue, September 21, 2021\",\"volume\":\"233 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2021-09-15\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Day 1 Tue, September 21, 2021\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.2118/206010-ms\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Day 1 Tue, September 21, 2021","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.2118/206010-ms","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

摘要

聚合物驱是最常用的化学提高采收率方法之一。传统上,人们认为该技术通过只扫过的原油来提高宏观扫油效率。然而,最近研究发现,在多孔介质中表现出粘弹性行为的聚合物也可以提高微观驱油效率,从而获得更高的额外采收率。因此,准确预测聚合物的复杂流变响应对于正确估计聚合物驱的增油量至关重要。本文提出了一种新的粘弹性模型来综合分析聚合物在多孔介质中的流变行为。提出的粘弹性模型被认为是文献中提供的统一表观粘度模型的扩展,被称为扩展统一粘度模型(E-UVM)。该模型的主要优点是能够捕捉到聚合物在井筒附近的极限剪切速率下的机械降解。此外,模型中使用的拟合参数与岩石和聚合物性质相关,大大减少了未来聚合物筛选工作中耗时的岩心驱油测试的需要。在MATLAB油藏模拟工具箱(MRST)中实现了扩展粘弹性模型,并与模拟器中已有的原始剪切模型进行了验证。结果表明,在MRST中实现黏度模型比原来的方法更准确、更实用。此外,将之前提出的各种粘度模型与油藏模拟器中的E-UVM进行比较,发现后者模型可以产生更可靠的采收率预测,因为它考虑了聚合物的机械降解。本研究提出了一种新颖的粘弹性模型,与文献中的其他模型相比,该模型更全面,更具代表性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
An Extended Viscoelastic Model for Predicting Polymer Apparent Viscosity at Different Shear Rates
Polymer flooding is one of the most commonly used chemical EOR methods. Conventionally, this technique was believed to improve macroscopic sweep efficiency by sweeping only bypassed oil. Nevertheless, recently it has been found that polymers exhibiting viscoelastic behavior in the porous medium can also improve microscopic displacement efficiency resulting in higher additional oil recovery. Therefore, an accurate prediction of the complex rheological response of polymers is crucial to obtain a proper estimation of incremental oil to polymer flooding. In this paper, a novel viscoelastic model is proposed to comprehensively analyze the polymer rheological behavior in porous media. The proposed viscoelastic model is considered an extension of the unified apparent viscosity model provided in the literature and is termed as extended unified viscosity model (E-UVM). The main advantage of the proposed model is its ability to capture the polymer mechanical degradation at ultimate shear rates primarily observed near wellbores. Furthermore, the fitting parameters used in the model were correlated to rock and polymer properties, significantly reducing the need for time-consuming coreflooding tests for future polymer screening works. Moreover, the extended viscoelastic model was implemented in MATLAB Reservoir Simulation Toolbox (MRST) and verified against the original shear model existing in the simulator. It was found that implementing the viscosity model in MRST might be more accurate and practical than the original method. In addition, the comparison between various viscosity models proposed earlier and E-UVM in the reservoir simulator revealed that the latter model could yield more reliable oil recovery predictions since it accommodates the mechanical degradation of polymers. This study presents a novel viscoelastic model that is more comprehensive and representative as opposed to other models in the literature.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Pollination Inspired Clustering Model for Wireless Sensor Network Optimization Three Phase Coil based Optimized Wireless Charging System for Electric Vehicles Wireless Power Transfer Device Based on RF Energy Circuit and Transformer Coupling Procedure Hybrid Micro-Energy Harvesting Model using WSN for Self-Sustainable Wireless Mobile Charging Application Automated Multimodal Fusion Technique for the Classification of Human Brain on Alzheimer’s Disorder
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1