{"title":"代数曲线效果更好","authors":"T. Tasdizen, Jean-Philippe Tarel, D. Cooper","doi":"10.1109/CVPR.1999.784605","DOIUrl":null,"url":null,"abstract":"An algebraic curve is defined as the zero set of a polynomial in two variables. Algebraic curves are practical for modeling shapes much more complicated than conics or superquadrics. The main drawback in representing shapes by algebraic curves has been the lack of repeatability in fitting algebraic curves to data. A regularized fast linear fitting method based on ridge regression and restricting the representation to well behaved subsets of polynomials is proposed, and its properties are investigated. The fitting algorithm is of sufficient stability for very fast position-invariant shape recognition, position estimation, and shape tracking, based on new invariants and representations, and is appropriate to open as well as closed curves of unorganized data. Among appropriate applications are shape-based indexing into image databases.","PeriodicalId":20644,"journal":{"name":"Proceedings. 1999 IEEE Computer Society Conference on Computer Vision and Pattern Recognition (Cat. No PR00149)","volume":"1 1","pages":"35-41 Vol. 2"},"PeriodicalIF":0.0000,"publicationDate":"1999-06-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"23","resultStr":"{\"title\":\"Algebraic curves that work better\",\"authors\":\"T. Tasdizen, Jean-Philippe Tarel, D. Cooper\",\"doi\":\"10.1109/CVPR.1999.784605\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"An algebraic curve is defined as the zero set of a polynomial in two variables. Algebraic curves are practical for modeling shapes much more complicated than conics or superquadrics. The main drawback in representing shapes by algebraic curves has been the lack of repeatability in fitting algebraic curves to data. A regularized fast linear fitting method based on ridge regression and restricting the representation to well behaved subsets of polynomials is proposed, and its properties are investigated. The fitting algorithm is of sufficient stability for very fast position-invariant shape recognition, position estimation, and shape tracking, based on new invariants and representations, and is appropriate to open as well as closed curves of unorganized data. Among appropriate applications are shape-based indexing into image databases.\",\"PeriodicalId\":20644,\"journal\":{\"name\":\"Proceedings. 1999 IEEE Computer Society Conference on Computer Vision and Pattern Recognition (Cat. No PR00149)\",\"volume\":\"1 1\",\"pages\":\"35-41 Vol. 2\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"1999-06-23\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"23\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings. 1999 IEEE Computer Society Conference on Computer Vision and Pattern Recognition (Cat. No PR00149)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/CVPR.1999.784605\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings. 1999 IEEE Computer Society Conference on Computer Vision and Pattern Recognition (Cat. No PR00149)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/CVPR.1999.784605","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
An algebraic curve is defined as the zero set of a polynomial in two variables. Algebraic curves are practical for modeling shapes much more complicated than conics or superquadrics. The main drawback in representing shapes by algebraic curves has been the lack of repeatability in fitting algebraic curves to data. A regularized fast linear fitting method based on ridge regression and restricting the representation to well behaved subsets of polynomials is proposed, and its properties are investigated. The fitting algorithm is of sufficient stability for very fast position-invariant shape recognition, position estimation, and shape tracking, based on new invariants and representations, and is appropriate to open as well as closed curves of unorganized data. Among appropriate applications are shape-based indexing into image databases.