{"title":"应变传感织物特性","authors":"A. Tognetti, F. Lorussi, M. Tesconi, D. D. Rossi","doi":"10.1109/ICSENS.2004.1426217","DOIUrl":null,"url":null,"abstract":"Electrically conductive elastomer (CE) composites show piezoresistive properties when a deformation is applied. In several applications, CE can be integrated into fabric or into other flexible substrates and can be employed as a strain sensor. Moreover, integrated CE sensors may be used in biomechanical analysis to realize wearable kinesthetic interfaces able to detect the posture and movement of a subject. Unfortunately, the long transient time (up to several minutes) and some peculiar non-linear phenomena in CE require a complex treatment of signals which is described in the present work.","PeriodicalId":20476,"journal":{"name":"Proceedings of IEEE Sensors, 2004.","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2004-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"30","resultStr":"{\"title\":\"Strain sensing fabric characterization\",\"authors\":\"A. Tognetti, F. Lorussi, M. Tesconi, D. D. Rossi\",\"doi\":\"10.1109/ICSENS.2004.1426217\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Electrically conductive elastomer (CE) composites show piezoresistive properties when a deformation is applied. In several applications, CE can be integrated into fabric or into other flexible substrates and can be employed as a strain sensor. Moreover, integrated CE sensors may be used in biomechanical analysis to realize wearable kinesthetic interfaces able to detect the posture and movement of a subject. Unfortunately, the long transient time (up to several minutes) and some peculiar non-linear phenomena in CE require a complex treatment of signals which is described in the present work.\",\"PeriodicalId\":20476,\"journal\":{\"name\":\"Proceedings of IEEE Sensors, 2004.\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2004-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"30\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings of IEEE Sensors, 2004.\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICSENS.2004.1426217\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of IEEE Sensors, 2004.","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICSENS.2004.1426217","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Electrically conductive elastomer (CE) composites show piezoresistive properties when a deformation is applied. In several applications, CE can be integrated into fabric or into other flexible substrates and can be employed as a strain sensor. Moreover, integrated CE sensors may be used in biomechanical analysis to realize wearable kinesthetic interfaces able to detect the posture and movement of a subject. Unfortunately, the long transient time (up to several minutes) and some peculiar non-linear phenomena in CE require a complex treatment of signals which is described in the present work.