{"title":"基于生物质毛发改性的乙基纤维素柔性感应湿度传感器研究","authors":"Linlin Guo, Hongquan Zhang, Junchang Yu, Yongyi Sun, Ligang Dou, Tingting Zhao","doi":"10.1109/ICOCN53177.2021.9563672","DOIUrl":null,"url":null,"abstract":"In order to overcome the shortcomings of traditional humidity sensor design, a flexible inductive humidity sensor based on ethyl cellulose hair modification is proposed. The thermal purification working mode of the humidity sensor is studied, and its performance is tested by the data acquisition system. The experiment shows, the sensitivity of the sensor is 118.92Hz/%RH, Response time is less than 700s, Dampness is 3%RH, Weekly drift is within ±3%RH. The flexible inductive humidity sensor developed in this paper has high sensitivity performance, which verifies that a new method of humidity testing by inductance. It is more suitable for wearable scenarios and has a wide range of potential for humidity detection applications.","PeriodicalId":6756,"journal":{"name":"2021 19th International Conference on Optical Communications and Networks (ICOCN)","volume":"21 1","pages":"1-4"},"PeriodicalIF":0.0000,"publicationDate":"2021-08-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Research on Ethyl Cellulose Flexible Inductive Humidity Sensor Based on Biomass Hair Modification\",\"authors\":\"Linlin Guo, Hongquan Zhang, Junchang Yu, Yongyi Sun, Ligang Dou, Tingting Zhao\",\"doi\":\"10.1109/ICOCN53177.2021.9563672\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In order to overcome the shortcomings of traditional humidity sensor design, a flexible inductive humidity sensor based on ethyl cellulose hair modification is proposed. The thermal purification working mode of the humidity sensor is studied, and its performance is tested by the data acquisition system. The experiment shows, the sensitivity of the sensor is 118.92Hz/%RH, Response time is less than 700s, Dampness is 3%RH, Weekly drift is within ±3%RH. The flexible inductive humidity sensor developed in this paper has high sensitivity performance, which verifies that a new method of humidity testing by inductance. It is more suitable for wearable scenarios and has a wide range of potential for humidity detection applications.\",\"PeriodicalId\":6756,\"journal\":{\"name\":\"2021 19th International Conference on Optical Communications and Networks (ICOCN)\",\"volume\":\"21 1\",\"pages\":\"1-4\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2021-08-23\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2021 19th International Conference on Optical Communications and Networks (ICOCN)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICOCN53177.2021.9563672\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2021 19th International Conference on Optical Communications and Networks (ICOCN)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICOCN53177.2021.9563672","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Research on Ethyl Cellulose Flexible Inductive Humidity Sensor Based on Biomass Hair Modification
In order to overcome the shortcomings of traditional humidity sensor design, a flexible inductive humidity sensor based on ethyl cellulose hair modification is proposed. The thermal purification working mode of the humidity sensor is studied, and its performance is tested by the data acquisition system. The experiment shows, the sensitivity of the sensor is 118.92Hz/%RH, Response time is less than 700s, Dampness is 3%RH, Weekly drift is within ±3%RH. The flexible inductive humidity sensor developed in this paper has high sensitivity performance, which verifies that a new method of humidity testing by inductance. It is more suitable for wearable scenarios and has a wide range of potential for humidity detection applications.