SiO2-ZrO2材料合成方法的影响

Amit Kumar, S. Singhal, Shilpi Aggarwal, R. P. Badoni, A. Sharma
{"title":"SiO2-ZrO2材料合成方法的影响","authors":"Amit Kumar, S. Singhal, Shilpi Aggarwal, R. P. Badoni, A. Sharma","doi":"10.1515/cse-2018-0005","DOIUrl":null,"url":null,"abstract":"Abstract In the present manuscript, the effect of the synthetic route on the properties of SiO2-ZrO2 has been evaluated. Co-precipitation, sol-gel and microwave methods were adopted for synthesizing the structured oxide. The properties of the final products such as surface morphology, crystallinity, surface area, pore volume and size, particle size and total acidity were examined using standard instrumentation like Fe-SEM, XRD, BET and TPD. The results revealed that the mixed oxides were mesoporous in nature with a high BET surface area (315- 435m2/g). Among various methods, the microwave route achieved the highest surface area (433m2/g), pore volume (0.70cc/g) and pore size (6.50nm). The total acidity of the sample synthesized by the microwave reactor was also higher (0.296mmol/g) than that resulting from other methods. Results conclude that microwave method is a suitable choice for synthesizing the structured oxides with desirable properties.","PeriodicalId":9642,"journal":{"name":"Catalysis for Sustainable Energy","volume":"19 1","pages":"34 - 40"},"PeriodicalIF":0.0000,"publicationDate":"2018-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"5","resultStr":"{\"title\":\"Influence of Synthetic Approach of SiO2-ZrO2 Materials\",\"authors\":\"Amit Kumar, S. Singhal, Shilpi Aggarwal, R. P. Badoni, A. Sharma\",\"doi\":\"10.1515/cse-2018-0005\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Abstract In the present manuscript, the effect of the synthetic route on the properties of SiO2-ZrO2 has been evaluated. Co-precipitation, sol-gel and microwave methods were adopted for synthesizing the structured oxide. The properties of the final products such as surface morphology, crystallinity, surface area, pore volume and size, particle size and total acidity were examined using standard instrumentation like Fe-SEM, XRD, BET and TPD. The results revealed that the mixed oxides were mesoporous in nature with a high BET surface area (315- 435m2/g). Among various methods, the microwave route achieved the highest surface area (433m2/g), pore volume (0.70cc/g) and pore size (6.50nm). The total acidity of the sample synthesized by the microwave reactor was also higher (0.296mmol/g) than that resulting from other methods. Results conclude that microwave method is a suitable choice for synthesizing the structured oxides with desirable properties.\",\"PeriodicalId\":9642,\"journal\":{\"name\":\"Catalysis for Sustainable Energy\",\"volume\":\"19 1\",\"pages\":\"34 - 40\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2018-11-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"5\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Catalysis for Sustainable Energy\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1515/cse-2018-0005\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Catalysis for Sustainable Energy","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1515/cse-2018-0005","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 5

摘要

摘要本文评价了合成路线对SiO2-ZrO2性能的影响。采用共沉淀法、溶胶-凝胶法和微波法合成了结构氧化物。采用Fe-SEM、XRD、BET、TPD等标准仪器对产物的表面形貌、结晶度、比表面积、孔隙体积及粒径、粒径、总酸度等进行了表征。结果表明,混合氧化物具有介孔性质,具有较高的BET比表面积(315 ~ 435m2/g)。在各种方法中,微波途径获得了最高的比表面积(433m2/g),孔径(0.70cc/g)和孔径(6.50nm)。微波反应器合成的样品的总酸度(0.296mmol/g)也高于其他方法得到的样品。结果表明,微波法是合成具有理想性能的结构氧化物的合适选择。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Influence of Synthetic Approach of SiO2-ZrO2 Materials
Abstract In the present manuscript, the effect of the synthetic route on the properties of SiO2-ZrO2 has been evaluated. Co-precipitation, sol-gel and microwave methods were adopted for synthesizing the structured oxide. The properties of the final products such as surface morphology, crystallinity, surface area, pore volume and size, particle size and total acidity were examined using standard instrumentation like Fe-SEM, XRD, BET and TPD. The results revealed that the mixed oxides were mesoporous in nature with a high BET surface area (315- 435m2/g). Among various methods, the microwave route achieved the highest surface area (433m2/g), pore volume (0.70cc/g) and pore size (6.50nm). The total acidity of the sample synthesized by the microwave reactor was also higher (0.296mmol/g) than that resulting from other methods. Results conclude that microwave method is a suitable choice for synthesizing the structured oxides with desirable properties.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
A study of fast pyrolysis of plant biomass assisted by the conversion of volatile products using Fe(Co, Ni)/ZSM-5 catalysts Solid-Solutions as Supports and Robust Photocatalysts and Electrocatalysts: A Review Alkali Lignin Catalytic Hydrogenolysis with Biofuel Production Hydrogen Production from Catalytic Polyethylene Terephthalate Waste Reforming Reaction, an overview Hydrogen-Free Deoxygenation of Bio-Oil Model Compounds over Sulfur-Free Polymer Supported Catalysts
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1