{"title":"基于相互关联的肌电信号特征提取用于神经肌肉疾病分类","authors":"R. Bose, Kaniska Samanta, S. Chatterjee","doi":"10.1109/ICICPI.2016.7859710","DOIUrl":null,"url":null,"abstract":"In this contribution, classification of two main neuromuscular diseases namely Myopathy and Neuropathy and Healthy signals is performed using cross-correlation based feature extraction technique. For this purpose, cross-correlation of Healthy, Myopathy and Neuropathy disease EMG signal is done with a reference Healthy signal. Selective features like Hjorth, Adaptive Autoregressive and statistical features comprising mean, standard deviation and power are extracted from the cross-correlated signals. Support Vector Machine(SVM) and k-Nearest Neighbor(kNN) are the two classifiers used for this work. Highest classification accuracy of 100% is obtainedby SVM using Gaussian Radial Basis Function (RBF) as the kernel function with AAR and all combined features as the feature set. For kNN, k=4 yields best result of 100% accuracy using the combined feature set.","PeriodicalId":6501,"journal":{"name":"2016 International Conference on Intelligent Control Power and Instrumentation (ICICPI)","volume":"32 1","pages":"241-245"},"PeriodicalIF":0.0000,"publicationDate":"2016-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"19","resultStr":"{\"title\":\"Cross-correlation based feature extraction from EMG signals for classification of neuro-muscular diseases\",\"authors\":\"R. Bose, Kaniska Samanta, S. Chatterjee\",\"doi\":\"10.1109/ICICPI.2016.7859710\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this contribution, classification of two main neuromuscular diseases namely Myopathy and Neuropathy and Healthy signals is performed using cross-correlation based feature extraction technique. For this purpose, cross-correlation of Healthy, Myopathy and Neuropathy disease EMG signal is done with a reference Healthy signal. Selective features like Hjorth, Adaptive Autoregressive and statistical features comprising mean, standard deviation and power are extracted from the cross-correlated signals. Support Vector Machine(SVM) and k-Nearest Neighbor(kNN) are the two classifiers used for this work. Highest classification accuracy of 100% is obtainedby SVM using Gaussian Radial Basis Function (RBF) as the kernel function with AAR and all combined features as the feature set. For kNN, k=4 yields best result of 100% accuracy using the combined feature set.\",\"PeriodicalId\":6501,\"journal\":{\"name\":\"2016 International Conference on Intelligent Control Power and Instrumentation (ICICPI)\",\"volume\":\"32 1\",\"pages\":\"241-245\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2016-10-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"19\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2016 International Conference on Intelligent Control Power and Instrumentation (ICICPI)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICICPI.2016.7859710\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2016 International Conference on Intelligent Control Power and Instrumentation (ICICPI)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICICPI.2016.7859710","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Cross-correlation based feature extraction from EMG signals for classification of neuro-muscular diseases
In this contribution, classification of two main neuromuscular diseases namely Myopathy and Neuropathy and Healthy signals is performed using cross-correlation based feature extraction technique. For this purpose, cross-correlation of Healthy, Myopathy and Neuropathy disease EMG signal is done with a reference Healthy signal. Selective features like Hjorth, Adaptive Autoregressive and statistical features comprising mean, standard deviation and power are extracted from the cross-correlated signals. Support Vector Machine(SVM) and k-Nearest Neighbor(kNN) are the two classifiers used for this work. Highest classification accuracy of 100% is obtainedby SVM using Gaussian Radial Basis Function (RBF) as the kernel function with AAR and all combined features as the feature set. For kNN, k=4 yields best result of 100% accuracy using the combined feature set.