B. Radisavljevic, Daria Krasnozhon, M. Whitwick, A. Kis
{"title":"基于mos2的器件和电路","authors":"B. Radisavljevic, Daria Krasnozhon, M. Whitwick, A. Kis","doi":"10.1109/DRC.2012.6257008","DOIUrl":null,"url":null,"abstract":"Two-dimensional crystals offer several inherent advantages over conventional 3D electronic materials or 1D nanomaterials such as nanotubes and nanowires. Their planar geometry makes it easier to fabricate circuits and complex structures by tailoring 2D layers into desired shapes. Because of their atomic scale thickness, 2D materials also represent the ultimate limit of miniaturization in the vertical dimension and allow the fabrication of shorter transistors due to enhanced electrostatic control. Another advantage of 2D semiconductors is that their electronic properties (band gap, mobility, work function) can be tuned for example by changing the number of layers or applying external electric fields.","PeriodicalId":6808,"journal":{"name":"70th Device Research Conference","volume":"72 1","pages":"179-180"},"PeriodicalIF":0.0000,"publicationDate":"2012-06-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"MoS2-based devices and circuits\",\"authors\":\"B. Radisavljevic, Daria Krasnozhon, M. Whitwick, A. Kis\",\"doi\":\"10.1109/DRC.2012.6257008\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Two-dimensional crystals offer several inherent advantages over conventional 3D electronic materials or 1D nanomaterials such as nanotubes and nanowires. Their planar geometry makes it easier to fabricate circuits and complex structures by tailoring 2D layers into desired shapes. Because of their atomic scale thickness, 2D materials also represent the ultimate limit of miniaturization in the vertical dimension and allow the fabrication of shorter transistors due to enhanced electrostatic control. Another advantage of 2D semiconductors is that their electronic properties (band gap, mobility, work function) can be tuned for example by changing the number of layers or applying external electric fields.\",\"PeriodicalId\":6808,\"journal\":{\"name\":\"70th Device Research Conference\",\"volume\":\"72 1\",\"pages\":\"179-180\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2012-06-18\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"70th Device Research Conference\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/DRC.2012.6257008\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"70th Device Research Conference","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/DRC.2012.6257008","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Two-dimensional crystals offer several inherent advantages over conventional 3D electronic materials or 1D nanomaterials such as nanotubes and nanowires. Their planar geometry makes it easier to fabricate circuits and complex structures by tailoring 2D layers into desired shapes. Because of their atomic scale thickness, 2D materials also represent the ultimate limit of miniaturization in the vertical dimension and allow the fabrication of shorter transistors due to enhanced electrostatic control. Another advantage of 2D semiconductors is that their electronic properties (band gap, mobility, work function) can be tuned for example by changing the number of layers or applying external electric fields.