基于判别特征的字典学习的野生动物检测

Pragya Gupta, G. Verma
{"title":"基于判别特征的字典学习的野生动物检测","authors":"Pragya Gupta, G. Verma","doi":"10.1109/CCAA.2017.8229781","DOIUrl":null,"url":null,"abstract":"Wild animal detection is an active research area since last many decades among wildlife researchers to study and analyze wild animals and their behavior. This paper presents sparse representation based wild animal detection system using Discriminative Feature-oriented Dictionary Learning (DFDL). DFDL extracts discriminative class-specific features and shows a low complexity method for animal detection. We acquired class-specific dictionaries allowed to represent a new image to identity of the class of the image. Concurrently, these dictionaries are incapable of representing the samples of other classes. The experiments are performed over in-house database compiled by us. We achieved promising results using DFDL with 93% accuracy.","PeriodicalId":6627,"journal":{"name":"2017 International Conference on Computing, Communication and Automation (ICCCA)","volume":"8 1","pages":"104-109"},"PeriodicalIF":0.0000,"publicationDate":"2017-05-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"4","resultStr":"{\"title\":\"Wild animal detection using discriminative feature-oriented dictionary learning\",\"authors\":\"Pragya Gupta, G. Verma\",\"doi\":\"10.1109/CCAA.2017.8229781\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Wild animal detection is an active research area since last many decades among wildlife researchers to study and analyze wild animals and their behavior. This paper presents sparse representation based wild animal detection system using Discriminative Feature-oriented Dictionary Learning (DFDL). DFDL extracts discriminative class-specific features and shows a low complexity method for animal detection. We acquired class-specific dictionaries allowed to represent a new image to identity of the class of the image. Concurrently, these dictionaries are incapable of representing the samples of other classes. The experiments are performed over in-house database compiled by us. We achieved promising results using DFDL with 93% accuracy.\",\"PeriodicalId\":6627,\"journal\":{\"name\":\"2017 International Conference on Computing, Communication and Automation (ICCCA)\",\"volume\":\"8 1\",\"pages\":\"104-109\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2017-05-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"4\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2017 International Conference on Computing, Communication and Automation (ICCCA)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/CCAA.2017.8229781\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2017 International Conference on Computing, Communication and Automation (ICCCA)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/CCAA.2017.8229781","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 4

摘要

野生动物检测是近几十年来野生动物研究者研究和分析野生动物及其行为的一个活跃研究领域。提出了一种基于稀疏表示的基于判别特征的字典学习(DFDL)的野生动物检测系统。DFDL提取有区别的类特异性特征,显示出一种低复杂度的动物检测方法。我们获得了用于表示新图像的类特定字典,以识别图像的类。同时,这些字典不能表示其他类的样本。实验是在我们编制的内部数据库上进行的。我们使用DFDL取得了令人满意的结果,准确率达到93%。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Wild animal detection using discriminative feature-oriented dictionary learning
Wild animal detection is an active research area since last many decades among wildlife researchers to study and analyze wild animals and their behavior. This paper presents sparse representation based wild animal detection system using Discriminative Feature-oriented Dictionary Learning (DFDL). DFDL extracts discriminative class-specific features and shows a low complexity method for animal detection. We acquired class-specific dictionaries allowed to represent a new image to identity of the class of the image. Concurrently, these dictionaries are incapable of representing the samples of other classes. The experiments are performed over in-house database compiled by us. We achieved promising results using DFDL with 93% accuracy.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Sentiment analysis on product reviews BSS: Blockchain security over software defined network A detailed analysis of data consistency concepts in data exchange formats (JSON & XML) CBIR by cascading features & SVM ADANS: An agriculture domain question answering system using ontologies
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1