A. Arcella, M. Oliva, Sabrina Staffieri, M. Sánchez, M. Madonna, S. Castaldo, F. Giangaspero, L. Frati
{"title":"茶树油:抑制胶质母细胞瘤生长的新型天然佐剂","authors":"A. Arcella, M. Oliva, Sabrina Staffieri, M. Sánchez, M. Madonna, S. Castaldo, F. Giangaspero, L. Frati","doi":"10.5897/JPP2019.0549","DOIUrl":null,"url":null,"abstract":"Tea Tree oil (TTO), the essential oil from the Australian native Melaleuca alternifolia has demonstrated a variety of beneficial efficacies including antimicrobial, antifungal, antiviral and anti-inflammatory. This report discusses data obtained on the in vitro activity of TTO on human glioblastoma cells U87MG. Cell viability was examined by 2-(4,5-dimethyl-2-thiazolyl)-3,5-diphenyl-2H-tetrazolium bromide MTT assay. Growth was investigated by incubating cells with various concentrations of TTO (0.025 and 0.05 %) for 24, 48 or 72 h and daily cell count. Cell cycle and apoptosis assay were assessed by flow citometry. TTO decreased cell viability in a dose and time-dependent manner. . The cell cycle distribution showed that TTO enhanced the accumulation of the cells in G0/G1 phase. The analysis by Western blot of protein related to cell cycle (CDK2 and p27), cell apoptosis (caspase 6 and 8), necrosis (TNFR1 and RIP1) demonstrated that TTO induces U87MG growth inhibition by more synergic mechanisms: necrosis, low level apoptosis and cell cycle arrest. TTO induces also in vivo glioblastoma tumor growth inhibition in a murine subcutaneous model. \n \n Key words: Brain cancer, tea tree oil, terpinol, glioblastoma, natural drug, adjuvant chemotherapy, temozolomide, apoptosis, cell cycle.","PeriodicalId":16801,"journal":{"name":"Journal of Pharmacognosy and Phytotherapy","volume":"32 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2019-10-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"4","resultStr":"{\"title\":\"Tea tree oil a new natural adjuvant for inhibiting glioblastoma growth\",\"authors\":\"A. Arcella, M. Oliva, Sabrina Staffieri, M. Sánchez, M. Madonna, S. Castaldo, F. Giangaspero, L. Frati\",\"doi\":\"10.5897/JPP2019.0549\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Tea Tree oil (TTO), the essential oil from the Australian native Melaleuca alternifolia has demonstrated a variety of beneficial efficacies including antimicrobial, antifungal, antiviral and anti-inflammatory. This report discusses data obtained on the in vitro activity of TTO on human glioblastoma cells U87MG. Cell viability was examined by 2-(4,5-dimethyl-2-thiazolyl)-3,5-diphenyl-2H-tetrazolium bromide MTT assay. Growth was investigated by incubating cells with various concentrations of TTO (0.025 and 0.05 %) for 24, 48 or 72 h and daily cell count. Cell cycle and apoptosis assay were assessed by flow citometry. TTO decreased cell viability in a dose and time-dependent manner. . The cell cycle distribution showed that TTO enhanced the accumulation of the cells in G0/G1 phase. The analysis by Western blot of protein related to cell cycle (CDK2 and p27), cell apoptosis (caspase 6 and 8), necrosis (TNFR1 and RIP1) demonstrated that TTO induces U87MG growth inhibition by more synergic mechanisms: necrosis, low level apoptosis and cell cycle arrest. TTO induces also in vivo glioblastoma tumor growth inhibition in a murine subcutaneous model. \\n \\n Key words: Brain cancer, tea tree oil, terpinol, glioblastoma, natural drug, adjuvant chemotherapy, temozolomide, apoptosis, cell cycle.\",\"PeriodicalId\":16801,\"journal\":{\"name\":\"Journal of Pharmacognosy and Phytotherapy\",\"volume\":\"32 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2019-10-31\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"4\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Pharmacognosy and Phytotherapy\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.5897/JPP2019.0549\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Pharmacognosy and Phytotherapy","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.5897/JPP2019.0549","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Tea tree oil a new natural adjuvant for inhibiting glioblastoma growth
Tea Tree oil (TTO), the essential oil from the Australian native Melaleuca alternifolia has demonstrated a variety of beneficial efficacies including antimicrobial, antifungal, antiviral and anti-inflammatory. This report discusses data obtained on the in vitro activity of TTO on human glioblastoma cells U87MG. Cell viability was examined by 2-(4,5-dimethyl-2-thiazolyl)-3,5-diphenyl-2H-tetrazolium bromide MTT assay. Growth was investigated by incubating cells with various concentrations of TTO (0.025 and 0.05 %) for 24, 48 or 72 h and daily cell count. Cell cycle and apoptosis assay were assessed by flow citometry. TTO decreased cell viability in a dose and time-dependent manner. . The cell cycle distribution showed that TTO enhanced the accumulation of the cells in G0/G1 phase. The analysis by Western blot of protein related to cell cycle (CDK2 and p27), cell apoptosis (caspase 6 and 8), necrosis (TNFR1 and RIP1) demonstrated that TTO induces U87MG growth inhibition by more synergic mechanisms: necrosis, low level apoptosis and cell cycle arrest. TTO induces also in vivo glioblastoma tumor growth inhibition in a murine subcutaneous model.
Key words: Brain cancer, tea tree oil, terpinol, glioblastoma, natural drug, adjuvant chemotherapy, temozolomide, apoptosis, cell cycle.