{"title":"4轴和5轴增材制造的零件使用自由形式的三维曲线表示","authors":"Erkan Gunpinar, Serhat Cam","doi":"10.1016/j.gmod.2022.101137","DOIUrl":null,"url":null,"abstract":"<div><p>Layer-by-layer additive manufacturing is commonly utilized for additive manufacturing. Recent works utilize curved layers (rather than planar ones), on which print-paths are located, and outline their advantage over planar slicing. In this paper, free-form three-dimensional curves are utilized as input for the generation of print-paths, which covers the model to be printed and do not necessarily lie on either a planar or a curved layer. Such print-paths have been recently studied for 3-axis additive manufacturing, and a novel additive manufacturing process for the models represented using such curves are proposed for 4 and 5-axis additive manufacturing in this paper. The input curves are first subdivided into short sub-curves (i.e., segments), which are then merged to obtain print-paths with (collision-free) printing-head orientations along them. Thanks to additional two rotational axes of the printing-head, a less number of print-paths can potentially be obtained, which can reduce subdivisions in the input curves, and therefore, is desirable in additive manufacturing for improved mechanical properties in the printed parts. As a proof of concept, the print-paths with printing-head orientations along them are finally validated using an AM simulator and machine.</p></div>","PeriodicalId":55083,"journal":{"name":"Graphical Models","volume":"120 ","pages":"Article 101137"},"PeriodicalIF":2.5000,"publicationDate":"2022-03-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"4 and 5-Axis additive manufacturing of parts represented using free-form 3D curves\",\"authors\":\"Erkan Gunpinar, Serhat Cam\",\"doi\":\"10.1016/j.gmod.2022.101137\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>Layer-by-layer additive manufacturing is commonly utilized for additive manufacturing. Recent works utilize curved layers (rather than planar ones), on which print-paths are located, and outline their advantage over planar slicing. In this paper, free-form three-dimensional curves are utilized as input for the generation of print-paths, which covers the model to be printed and do not necessarily lie on either a planar or a curved layer. Such print-paths have been recently studied for 3-axis additive manufacturing, and a novel additive manufacturing process for the models represented using such curves are proposed for 4 and 5-axis additive manufacturing in this paper. The input curves are first subdivided into short sub-curves (i.e., segments), which are then merged to obtain print-paths with (collision-free) printing-head orientations along them. Thanks to additional two rotational axes of the printing-head, a less number of print-paths can potentially be obtained, which can reduce subdivisions in the input curves, and therefore, is desirable in additive manufacturing for improved mechanical properties in the printed parts. As a proof of concept, the print-paths with printing-head orientations along them are finally validated using an AM simulator and machine.</p></div>\",\"PeriodicalId\":55083,\"journal\":{\"name\":\"Graphical Models\",\"volume\":\"120 \",\"pages\":\"Article 101137\"},\"PeriodicalIF\":2.5000,\"publicationDate\":\"2022-03-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Graphical Models\",\"FirstCategoryId\":\"94\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S1524070322000145\",\"RegionNum\":4,\"RegionCategory\":\"计算机科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"COMPUTER SCIENCE, SOFTWARE ENGINEERING\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Graphical Models","FirstCategoryId":"94","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1524070322000145","RegionNum":4,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"COMPUTER SCIENCE, SOFTWARE ENGINEERING","Score":null,"Total":0}
4 and 5-Axis additive manufacturing of parts represented using free-form 3D curves
Layer-by-layer additive manufacturing is commonly utilized for additive manufacturing. Recent works utilize curved layers (rather than planar ones), on which print-paths are located, and outline their advantage over planar slicing. In this paper, free-form three-dimensional curves are utilized as input for the generation of print-paths, which covers the model to be printed and do not necessarily lie on either a planar or a curved layer. Such print-paths have been recently studied for 3-axis additive manufacturing, and a novel additive manufacturing process for the models represented using such curves are proposed for 4 and 5-axis additive manufacturing in this paper. The input curves are first subdivided into short sub-curves (i.e., segments), which are then merged to obtain print-paths with (collision-free) printing-head orientations along them. Thanks to additional two rotational axes of the printing-head, a less number of print-paths can potentially be obtained, which can reduce subdivisions in the input curves, and therefore, is desirable in additive manufacturing for improved mechanical properties in the printed parts. As a proof of concept, the print-paths with printing-head orientations along them are finally validated using an AM simulator and machine.
期刊介绍:
Graphical Models is recognized internationally as a highly rated, top tier journal and is focused on the creation, geometric processing, animation, and visualization of graphical models and on their applications in engineering, science, culture, and entertainment. GMOD provides its readers with thoroughly reviewed and carefully selected papers that disseminate exciting innovations, that teach rigorous theoretical foundations, that propose robust and efficient solutions, or that describe ambitious systems or applications in a variety of topics.
We invite papers in five categories: research (contributions of novel theoretical or practical approaches or solutions), survey (opinionated views of the state-of-the-art and challenges in a specific topic), system (the architecture and implementation details of an innovative architecture for a complete system that supports model/animation design, acquisition, analysis, visualization?), application (description of a novel application of know techniques and evaluation of its impact), or lecture (an elegant and inspiring perspective on previously published results that clarifies them and teaches them in a new way).
GMOD offers its authors an accelerated review, feedback from experts in the field, immediate online publication of accepted papers, no restriction on color and length (when justified by the content) in the online version, and a broad promotion of published papers. A prestigious group of editors selected from among the premier international researchers in their fields oversees the review process.