Yizhe Zhang, Julian Roeder, G. Jacobs, J. Berroth, Gregor Hoepfner
{"title":"基于SysML面向功能系统架构的虚拟测试工作流——以风力发电机组系统为例","authors":"Yizhe Zhang, Julian Roeder, G. Jacobs, J. Berroth, Gregor Hoepfner","doi":"10.3390/wind2030032","DOIUrl":null,"url":null,"abstract":"Wind turbines (WT) are complex multidisciplinary systems containing a large number of mechanical, control, and electrical components. Model-Based Systems Engineering (MBSE) provides an approach for cross-discipline development to address the system complexity and focuses on creating and utilizing domain models as the primary means of information exchange. The domain models predict system behaviors and can support system validation through virtual testing at an early stage of system development. However, the further the WT development proceeds, the more system parameters are set, and the more domain models and virtual tests are involved. Therefore, it is necessary to design a framework of virtual testing workflows of WTs to support virtual validation processes as well as to automate those workflows. To achieve this goal, this contribution shows how standardized virtual testing workflows can be designed and linked to hierarchical and functional system architectures modeled in the Systems Modeling Language (SysML). The virtual testing workflows enable to trigger simulations of domain models and handle system parameters participating in the simulations, thus ensuring data consistency. Furthermore, to facilitate modular management and reuse of domain models, the domain models are classified according to model purposes, model fidelities, and system scopes. The virtual testing workflows are structured corresponding to the classification of the domain model, thereby forming a nested framework. To verify the feasibility of the proposed workflows, a virtual testing process of WT components (i.e., bearings) inside the system context with different model purposes and different model fidelities is demonstrated. It is shown that virtual testing workflows are systematically organized so that engineers can easily virtually (re-)validate the systems.","PeriodicalId":51210,"journal":{"name":"Wind and Structures","volume":"37 1","pages":""},"PeriodicalIF":1.3000,"publicationDate":"2022-09-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"9","resultStr":"{\"title\":\"Virtual Testing Workflows Based on the Function-Oriented System Architecture in SysML: A Case Study in Wind Turbine Systems\",\"authors\":\"Yizhe Zhang, Julian Roeder, G. Jacobs, J. Berroth, Gregor Hoepfner\",\"doi\":\"10.3390/wind2030032\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Wind turbines (WT) are complex multidisciplinary systems containing a large number of mechanical, control, and electrical components. Model-Based Systems Engineering (MBSE) provides an approach for cross-discipline development to address the system complexity and focuses on creating and utilizing domain models as the primary means of information exchange. The domain models predict system behaviors and can support system validation through virtual testing at an early stage of system development. However, the further the WT development proceeds, the more system parameters are set, and the more domain models and virtual tests are involved. Therefore, it is necessary to design a framework of virtual testing workflows of WTs to support virtual validation processes as well as to automate those workflows. To achieve this goal, this contribution shows how standardized virtual testing workflows can be designed and linked to hierarchical and functional system architectures modeled in the Systems Modeling Language (SysML). The virtual testing workflows enable to trigger simulations of domain models and handle system parameters participating in the simulations, thus ensuring data consistency. Furthermore, to facilitate modular management and reuse of domain models, the domain models are classified according to model purposes, model fidelities, and system scopes. The virtual testing workflows are structured corresponding to the classification of the domain model, thereby forming a nested framework. To verify the feasibility of the proposed workflows, a virtual testing process of WT components (i.e., bearings) inside the system context with different model purposes and different model fidelities is demonstrated. It is shown that virtual testing workflows are systematically organized so that engineers can easily virtually (re-)validate the systems.\",\"PeriodicalId\":51210,\"journal\":{\"name\":\"Wind and Structures\",\"volume\":\"37 1\",\"pages\":\"\"},\"PeriodicalIF\":1.3000,\"publicationDate\":\"2022-09-13\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"9\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Wind and Structures\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://doi.org/10.3390/wind2030032\",\"RegionNum\":4,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"CONSTRUCTION & BUILDING TECHNOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Wind and Structures","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.3390/wind2030032","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"CONSTRUCTION & BUILDING TECHNOLOGY","Score":null,"Total":0}
Virtual Testing Workflows Based on the Function-Oriented System Architecture in SysML: A Case Study in Wind Turbine Systems
Wind turbines (WT) are complex multidisciplinary systems containing a large number of mechanical, control, and electrical components. Model-Based Systems Engineering (MBSE) provides an approach for cross-discipline development to address the system complexity and focuses on creating and utilizing domain models as the primary means of information exchange. The domain models predict system behaviors and can support system validation through virtual testing at an early stage of system development. However, the further the WT development proceeds, the more system parameters are set, and the more domain models and virtual tests are involved. Therefore, it is necessary to design a framework of virtual testing workflows of WTs to support virtual validation processes as well as to automate those workflows. To achieve this goal, this contribution shows how standardized virtual testing workflows can be designed and linked to hierarchical and functional system architectures modeled in the Systems Modeling Language (SysML). The virtual testing workflows enable to trigger simulations of domain models and handle system parameters participating in the simulations, thus ensuring data consistency. Furthermore, to facilitate modular management and reuse of domain models, the domain models are classified according to model purposes, model fidelities, and system scopes. The virtual testing workflows are structured corresponding to the classification of the domain model, thereby forming a nested framework. To verify the feasibility of the proposed workflows, a virtual testing process of WT components (i.e., bearings) inside the system context with different model purposes and different model fidelities is demonstrated. It is shown that virtual testing workflows are systematically organized so that engineers can easily virtually (re-)validate the systems.
期刊介绍:
The WIND AND STRUCTURES, An International Journal, aims at: - Major publication channel for research in the general area of wind and structural engineering, - Wider distribution at more affordable subscription rates; - Faster reviewing and publication for manuscripts submitted.
The main theme of the Journal is the wind effects on structures. Areas covered by the journal include:
Wind loads and structural response,
Bluff-body aerodynamics,
Computational method,
Wind tunnel modeling,
Local wind environment,
Codes and regulations,
Wind effects on large scale structures.