结合主题建模、NERC和情感分类器的主题博客数据计算探索

V.K. Singh , P. Waila , R. Piryani , A. Uddin
{"title":"结合主题建模、NERC和情感分类器的主题博客数据计算探索","authors":"V.K. Singh ,&nbsp;P. Waila ,&nbsp;R. Piryani ,&nbsp;A. Uddin","doi":"10.1016/j.aasri.2013.10.033","DOIUrl":null,"url":null,"abstract":"<div><p>This paper presents findings of our exploratory research work on a novel combine of Topic Modeling, Named Entity Recognition and Sentiment Classification for sociological analysis of blog data. We have collected more than 500 blog posts on the broader theme of ‘Discrimination, Abuse and Crime against Women’. We employed topic discovery to identify top keywords and key themes and implemented the 7-entity model Named Entity Recognition process to identify the key persons, organizations and locations discussed in the blog posts. Thereafter we performed sentiment classification of the entire blog data into positive and negative categories using SentiWordNet. The results obtained are very interesting and validate the usefulness of our approach for computational analysis of social media data. The key contribution of the paper is to propose a novel Text Analytics combine and demonstrate its applicability for computational exploration of the social media data for sociological analysis purposes.</p></div>","PeriodicalId":100008,"journal":{"name":"AASRI Procedia","volume":"4 ","pages":"Pages 212-222"},"PeriodicalIF":0.0000,"publicationDate":"2013-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1016/j.aasri.2013.10.033","citationCount":"2","resultStr":"{\"title\":\"Computational Exploration of Theme-based Blog Data Using Topic Modeling, NERC and Sentiment Classifier Combine\",\"authors\":\"V.K. Singh ,&nbsp;P. Waila ,&nbsp;R. Piryani ,&nbsp;A. Uddin\",\"doi\":\"10.1016/j.aasri.2013.10.033\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>This paper presents findings of our exploratory research work on a novel combine of Topic Modeling, Named Entity Recognition and Sentiment Classification for sociological analysis of blog data. We have collected more than 500 blog posts on the broader theme of ‘Discrimination, Abuse and Crime against Women’. We employed topic discovery to identify top keywords and key themes and implemented the 7-entity model Named Entity Recognition process to identify the key persons, organizations and locations discussed in the blog posts. Thereafter we performed sentiment classification of the entire blog data into positive and negative categories using SentiWordNet. The results obtained are very interesting and validate the usefulness of our approach for computational analysis of social media data. The key contribution of the paper is to propose a novel Text Analytics combine and demonstrate its applicability for computational exploration of the social media data for sociological analysis purposes.</p></div>\",\"PeriodicalId\":100008,\"journal\":{\"name\":\"AASRI Procedia\",\"volume\":\"4 \",\"pages\":\"Pages 212-222\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2013-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://sci-hub-pdf.com/10.1016/j.aasri.2013.10.033\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"AASRI Procedia\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S2212671613000346\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"AASRI Procedia","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2212671613000346","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

摘要

本文介绍了我们将主题建模、命名实体识别和情感分类结合起来进行博客数据社会学分析的探索性研究成果。我们收集了500多篇关于“对妇女的歧视、虐待和犯罪”这一更广泛主题的博客文章。我们使用主题发现来识别关键字和关键主题,并实施7实体模型命名实体识别流程来识别博客文章中讨论的关键人物、组织和地点。然后,我们使用SentiWordNet对整个博客数据进行情绪分类,分为积极和消极两类。获得的结果非常有趣,并验证了我们的方法在社交媒体数据计算分析中的实用性。本文的关键贡献是提出了一种新的文本分析组合,并展示了其在社会学分析目的的社交媒体数据计算探索中的适用性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Computational Exploration of Theme-based Blog Data Using Topic Modeling, NERC and Sentiment Classifier Combine

This paper presents findings of our exploratory research work on a novel combine of Topic Modeling, Named Entity Recognition and Sentiment Classification for sociological analysis of blog data. We have collected more than 500 blog posts on the broader theme of ‘Discrimination, Abuse and Crime against Women’. We employed topic discovery to identify top keywords and key themes and implemented the 7-entity model Named Entity Recognition process to identify the key persons, organizations and locations discussed in the blog posts. Thereafter we performed sentiment classification of the entire blog data into positive and negative categories using SentiWordNet. The results obtained are very interesting and validate the usefulness of our approach for computational analysis of social media data. The key contribution of the paper is to propose a novel Text Analytics combine and demonstrate its applicability for computational exploration of the social media data for sociological analysis purposes.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Preface Preface Preface Preface Classification of Wild Animals based on SVM and Local Descriptors
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1