一种深度多模态学习方法和一种新的rgb深度数据集用于建筑屋顶提取

IF 1 4区 地球科学 Q4 GEOGRAPHY, PHYSICAL Photogrammetric Engineering and Remote Sensing Pub Date : 2021-10-01 DOI:10.14358/pers.21-00007r2
M. Khoshboresh-Masouleh, R. Shah-Hosseini
{"title":"一种深度多模态学习方法和一种新的rgb深度数据集用于建筑屋顶提取","authors":"M. Khoshboresh-Masouleh, R. Shah-Hosseini","doi":"10.14358/pers.21-00007r2","DOIUrl":null,"url":null,"abstract":"This study focuses on tackling the challenge of building mapping in multi-modal remote sensing data by proposing a novel, deep superpixel-wise convolutional neural network called DeepQuantized-Net, plus a new red, green, blue (RGB)-depth data set named IND. DeepQuantized-Net\n incorporated two practical ideas in segmentation: first, improving the object pattern with the exploitation of superpixels instead of pixels, as the imaging unit in DeepQuantized-Net. Second, the reduction of computational cost. The generated data set includes 294 RGB-depth images (256\n training images and 38 test images) from different locations in the state of Indiana in the U.S., with 1024 × 1024 pixels and a spatial resolution of 0.5 ftthat covers different cities. The experimental results using the IND data set demonstrates the mean F1 scores and the average\n Intersection over Union scores could increase by approximately 7.0% and 7.2% compared to other methods, respectively.","PeriodicalId":49702,"journal":{"name":"Photogrammetric Engineering and Remote Sensing","volume":"19 1","pages":""},"PeriodicalIF":1.0000,"publicationDate":"2021-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"9","resultStr":"{\"title\":\"A Deep Multi-Modal Learning Method and a New RGB-Depth Data Set for Building Roof Extraction\",\"authors\":\"M. Khoshboresh-Masouleh, R. Shah-Hosseini\",\"doi\":\"10.14358/pers.21-00007r2\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This study focuses on tackling the challenge of building mapping in multi-modal remote sensing data by proposing a novel, deep superpixel-wise convolutional neural network called DeepQuantized-Net, plus a new red, green, blue (RGB)-depth data set named IND. DeepQuantized-Net\\n incorporated two practical ideas in segmentation: first, improving the object pattern with the exploitation of superpixels instead of pixels, as the imaging unit in DeepQuantized-Net. Second, the reduction of computational cost. The generated data set includes 294 RGB-depth images (256\\n training images and 38 test images) from different locations in the state of Indiana in the U.S., with 1024 × 1024 pixels and a spatial resolution of 0.5 ftthat covers different cities. The experimental results using the IND data set demonstrates the mean F1 scores and the average\\n Intersection over Union scores could increase by approximately 7.0% and 7.2% compared to other methods, respectively.\",\"PeriodicalId\":49702,\"journal\":{\"name\":\"Photogrammetric Engineering and Remote Sensing\",\"volume\":\"19 1\",\"pages\":\"\"},\"PeriodicalIF\":1.0000,\"publicationDate\":\"2021-10-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"9\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Photogrammetric Engineering and Remote Sensing\",\"FirstCategoryId\":\"89\",\"ListUrlMain\":\"https://doi.org/10.14358/pers.21-00007r2\",\"RegionNum\":4,\"RegionCategory\":\"地球科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"GEOGRAPHY, PHYSICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Photogrammetric Engineering and Remote Sensing","FirstCategoryId":"89","ListUrlMain":"https://doi.org/10.14358/pers.21-00007r2","RegionNum":4,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"GEOGRAPHY, PHYSICAL","Score":null,"Total":0}
引用次数: 9

摘要

本研究通过提出一种新颖的深度超像素卷积神经网络DeepQuantized-Net,以及一种名为IND的新的红、绿、蓝(RGB)深度数据集,重点解决了在多模态遥感数据中构建映射的挑战。DeepQuantized-Net在分割中纳入了两个实用思想:首先,利用超像素而不是像素作为DeepQuantized-Net的成像单元来改进目标模式。第二,计算成本的降低。生成的数据集包括来自美国印第安纳州不同地点的294张rgb深度图像(256张训练图像和38张测试图像),像素为1024 × 1024,空间分辨率为0.5 ft,覆盖了不同的城市。使用IND数据集的实验结果表明,与其他方法相比,平均F1分数和平均Intersection / Union分数分别可以提高约7.0%和7.2%。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
A Deep Multi-Modal Learning Method and a New RGB-Depth Data Set for Building Roof Extraction
This study focuses on tackling the challenge of building mapping in multi-modal remote sensing data by proposing a novel, deep superpixel-wise convolutional neural network called DeepQuantized-Net, plus a new red, green, blue (RGB)-depth data set named IND. DeepQuantized-Net incorporated two practical ideas in segmentation: first, improving the object pattern with the exploitation of superpixels instead of pixels, as the imaging unit in DeepQuantized-Net. Second, the reduction of computational cost. The generated data set includes 294 RGB-depth images (256 training images and 38 test images) from different locations in the state of Indiana in the U.S., with 1024 × 1024 pixels and a spatial resolution of 0.5 ftthat covers different cities. The experimental results using the IND data set demonstrates the mean F1 scores and the average Intersection over Union scores could increase by approximately 7.0% and 7.2% compared to other methods, respectively.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Photogrammetric Engineering and Remote Sensing
Photogrammetric Engineering and Remote Sensing 地学-成像科学与照相技术
CiteScore
1.70
自引率
15.40%
发文量
89
审稿时长
9 months
期刊介绍: Photogrammetric Engineering & Remote Sensing commonly referred to as PE&RS, is the official journal of imaging and geospatial information science and technology. Included in the journal on a regular basis are highlight articles such as the popular columns “Grids & Datums” and “Mapping Matters” and peer reviewed technical papers. We publish thousands of documents, reports, codes, and informational articles in and about the industries relating to Geospatial Sciences, Remote Sensing, Photogrammetry and other imaging sciences.
期刊最新文献
A Powerful Correspondence Selection Method for Point Cloud Registration Based on Machine Learning Identification of Critical Urban Clusters for Placating Urban Heat Island Effects over Fast-Growing Tropical City Regions: Estimating the Contribution of Different City Sizes in Escalating UHI Intensity A Novel Object Detection Method for Solid Waste Incorporating a Weighted Deformable Convolution GIS Tips & Tricks ‐ Relationships Count when Mapping? An Integrated Approach for Wildfire Photography Telemetry using WRF Numerical Forecast Products
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1