Denis Benko, J. Martinka, Tomáš Štefko, Igor Wachter, P. Rantuch
{"title":"选定醇类着火危险的测定","authors":"Denis Benko, J. Martinka, Tomáš Štefko, Igor Wachter, P. Rantuch","doi":"10.2478/rput-2019-0009","DOIUrl":null,"url":null,"abstract":"Abstract The aim of the research was to determine the fire risk of selected flammable liquids (alcohols). Four alcohols, methanol, ethanol, propanol, and butanol, were chosen for the research. Flammable liquids were examined in a cone calorimeter at 0 and 5 kW.m−2 heat fluxes. Both, the cone calorimeter and test procedure, were in accordance with ISO 5660-1:2015. The fire risk was evaluated mainly on the basis of heat release rate, effective heat of combustion and carbon monoxide yield. Comparison of the achieved parameters of selected alcohols shows that the fire risk of the investigated alcohols increases with increasing the molar mass of alcohol and applied heat flow.","PeriodicalId":21013,"journal":{"name":"Research Papers Faculty of Materials Science and Technology Slovak University of Technology","volume":"22 1","pages":"81 - 85"},"PeriodicalIF":0.0000,"publicationDate":"2019-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Determination of Fire Risk of Selected Alcohols\",\"authors\":\"Denis Benko, J. Martinka, Tomáš Štefko, Igor Wachter, P. Rantuch\",\"doi\":\"10.2478/rput-2019-0009\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Abstract The aim of the research was to determine the fire risk of selected flammable liquids (alcohols). Four alcohols, methanol, ethanol, propanol, and butanol, were chosen for the research. Flammable liquids were examined in a cone calorimeter at 0 and 5 kW.m−2 heat fluxes. Both, the cone calorimeter and test procedure, were in accordance with ISO 5660-1:2015. The fire risk was evaluated mainly on the basis of heat release rate, effective heat of combustion and carbon monoxide yield. Comparison of the achieved parameters of selected alcohols shows that the fire risk of the investigated alcohols increases with increasing the molar mass of alcohol and applied heat flow.\",\"PeriodicalId\":21013,\"journal\":{\"name\":\"Research Papers Faculty of Materials Science and Technology Slovak University of Technology\",\"volume\":\"22 1\",\"pages\":\"81 - 85\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2019-06-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Research Papers Faculty of Materials Science and Technology Slovak University of Technology\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.2478/rput-2019-0009\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Research Papers Faculty of Materials Science and Technology Slovak University of Technology","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.2478/rput-2019-0009","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Abstract The aim of the research was to determine the fire risk of selected flammable liquids (alcohols). Four alcohols, methanol, ethanol, propanol, and butanol, were chosen for the research. Flammable liquids were examined in a cone calorimeter at 0 and 5 kW.m−2 heat fluxes. Both, the cone calorimeter and test procedure, were in accordance with ISO 5660-1:2015. The fire risk was evaluated mainly on the basis of heat release rate, effective heat of combustion and carbon monoxide yield. Comparison of the achieved parameters of selected alcohols shows that the fire risk of the investigated alcohols increases with increasing the molar mass of alcohol and applied heat flow.