Yuxiang Sun, B. Greet, D. Burkland, M. John, M. Razavi, A. Babakhani
{"title":"带芯片天线的无线供电植入式起搏器","authors":"Yuxiang Sun, B. Greet, D. Burkland, M. John, M. Razavi, A. Babakhani","doi":"10.1109/MWSYM.2017.8058831","DOIUrl":null,"url":null,"abstract":"We present a battery-less mm-sized wirelessly powered pacemaker microchip with on-chip antenna in 180nm CMOS process. The microchip harvests RF radiation from an external source in the X-band frequency, with the size of 4mm by 1mm. The in-vivo experiment is demonstrated successfully on a live pig heart. The pacemaker can be wirelessly powered with a distance of 2cm. It generates a stimulation pulse signal with a voltage magnitude of 1.3V. The wireless pacing testing was successfully demonstrated by changing the heart rhythm frequency from 1.67Hz to 2.87Hz.","PeriodicalId":6481,"journal":{"name":"2017 IEEE MTT-S International Microwave Symposium (IMS)","volume":"36 1","pages":"1242-1244"},"PeriodicalIF":0.0000,"publicationDate":"2017-06-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"20","resultStr":"{\"title\":\"Wirelessly powered implantable pacemaker with on-chip antenna\",\"authors\":\"Yuxiang Sun, B. Greet, D. Burkland, M. John, M. Razavi, A. Babakhani\",\"doi\":\"10.1109/MWSYM.2017.8058831\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We present a battery-less mm-sized wirelessly powered pacemaker microchip with on-chip antenna in 180nm CMOS process. The microchip harvests RF radiation from an external source in the X-band frequency, with the size of 4mm by 1mm. The in-vivo experiment is demonstrated successfully on a live pig heart. The pacemaker can be wirelessly powered with a distance of 2cm. It generates a stimulation pulse signal with a voltage magnitude of 1.3V. The wireless pacing testing was successfully demonstrated by changing the heart rhythm frequency from 1.67Hz to 2.87Hz.\",\"PeriodicalId\":6481,\"journal\":{\"name\":\"2017 IEEE MTT-S International Microwave Symposium (IMS)\",\"volume\":\"36 1\",\"pages\":\"1242-1244\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2017-06-04\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"20\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2017 IEEE MTT-S International Microwave Symposium (IMS)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/MWSYM.2017.8058831\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2017 IEEE MTT-S International Microwave Symposium (IMS)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/MWSYM.2017.8058831","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Wirelessly powered implantable pacemaker with on-chip antenna
We present a battery-less mm-sized wirelessly powered pacemaker microchip with on-chip antenna in 180nm CMOS process. The microchip harvests RF radiation from an external source in the X-band frequency, with the size of 4mm by 1mm. The in-vivo experiment is demonstrated successfully on a live pig heart. The pacemaker can be wirelessly powered with a distance of 2cm. It generates a stimulation pulse signal with a voltage magnitude of 1.3V. The wireless pacing testing was successfully demonstrated by changing the heart rhythm frequency from 1.67Hz to 2.87Hz.