边-细谷多项式的一种计算方法及其在苯上的应用

IF 2.9 2区 化学 Q2 CHEMISTRY, MULTIDISCIPLINARY Match-Communications in Mathematical and in Computer Chemistry Pub Date : 2023-01-01 DOI:10.46793/match.89-3.605k
M. Knor, Niko Tratnik
{"title":"边-细谷多项式的一种计算方法及其在苯上的应用","authors":"M. Knor, Niko Tratnik","doi":"10.46793/match.89-3.605k","DOIUrl":null,"url":null,"abstract":"The edge-Hosoya polynomial of a graph is the edge version of the famous Hosoya polynomial. Therefore, the edge-Hosoya polynomial counts the number of (unordered) pairs of edges at distance k ≥ 0 in a given graph. It is well known that this polynomial is closely related to the edge-Wiener index and the edge-hyper-Wiener index. As the main result of this paper, we greatly generalize an earlier result by providing a method for calculating the edge-Hosoya polynomial of a graph G which is obtained by identifying two edges of connected bipartite graphs G1 and G2. To show how the main theorem can be used, we apply it to phenylene chains. In particular, we present the recurrence relations and a linear time algorithm for calculating the edge-Hosoya polynomial of any phenylene chain. As a consequence, closed formula for the edge-Hosoya polynomial of linear phenylene chains is derived.","PeriodicalId":51115,"journal":{"name":"Match-Communications in Mathematical and in Computer Chemistry","volume":"21 1","pages":""},"PeriodicalIF":2.9000,"publicationDate":"2023-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"A Method for Computing the Edge-Hosoya Polynomial with Application to Phenylenes\",\"authors\":\"M. Knor, Niko Tratnik\",\"doi\":\"10.46793/match.89-3.605k\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The edge-Hosoya polynomial of a graph is the edge version of the famous Hosoya polynomial. Therefore, the edge-Hosoya polynomial counts the number of (unordered) pairs of edges at distance k ≥ 0 in a given graph. It is well known that this polynomial is closely related to the edge-Wiener index and the edge-hyper-Wiener index. As the main result of this paper, we greatly generalize an earlier result by providing a method for calculating the edge-Hosoya polynomial of a graph G which is obtained by identifying two edges of connected bipartite graphs G1 and G2. To show how the main theorem can be used, we apply it to phenylene chains. In particular, we present the recurrence relations and a linear time algorithm for calculating the edge-Hosoya polynomial of any phenylene chain. As a consequence, closed formula for the edge-Hosoya polynomial of linear phenylene chains is derived.\",\"PeriodicalId\":51115,\"journal\":{\"name\":\"Match-Communications in Mathematical and in Computer Chemistry\",\"volume\":\"21 1\",\"pages\":\"\"},\"PeriodicalIF\":2.9000,\"publicationDate\":\"2023-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Match-Communications in Mathematical and in Computer Chemistry\",\"FirstCategoryId\":\"92\",\"ListUrlMain\":\"https://doi.org/10.46793/match.89-3.605k\",\"RegionNum\":2,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"CHEMISTRY, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Match-Communications in Mathematical and in Computer Chemistry","FirstCategoryId":"92","ListUrlMain":"https://doi.org/10.46793/match.89-3.605k","RegionNum":2,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 1

摘要

图的边-细谷多项式是著名的细谷多项式的边版本。因此,edge-Hosoya多项式计算给定图中距离k≥0处(无序)边对的个数。众所周知,该多项式与边-维纳指数和边-超维纳指数密切相关。作为本文的主要结果,我们提供了一种计算图G的边-细谷多项式的方法,这是通过识别连通二部图G1和G2的两条边得到的。为了说明主要定理的应用,我们把它应用到苯基链上。特别地,我们给出了计算任何苯基链边-细谷多项式的递归关系和线性时间算法。由此导出了线性苯基链边-细谷多项式的封闭公式。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
A Method for Computing the Edge-Hosoya Polynomial with Application to Phenylenes
The edge-Hosoya polynomial of a graph is the edge version of the famous Hosoya polynomial. Therefore, the edge-Hosoya polynomial counts the number of (unordered) pairs of edges at distance k ≥ 0 in a given graph. It is well known that this polynomial is closely related to the edge-Wiener index and the edge-hyper-Wiener index. As the main result of this paper, we greatly generalize an earlier result by providing a method for calculating the edge-Hosoya polynomial of a graph G which is obtained by identifying two edges of connected bipartite graphs G1 and G2. To show how the main theorem can be used, we apply it to phenylene chains. In particular, we present the recurrence relations and a linear time algorithm for calculating the edge-Hosoya polynomial of any phenylene chain. As a consequence, closed formula for the edge-Hosoya polynomial of linear phenylene chains is derived.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
4.40
自引率
26.90%
发文量
71
审稿时长
2 months
期刊介绍: MATCH Communications in Mathematical and in Computer Chemistry publishes papers of original research as well as reviews on chemically important mathematical results and non-routine applications of mathematical techniques to chemical problems. A paper acceptable for publication must contain non-trivial mathematics or communicate non-routine computer-based procedures AND have a clear connection to chemistry. Papers are published without any processing or publication charge.
期刊最新文献
ChemCNet: An Explainable Integrated Model for Intelligent Analyzing Chemistry Synthesis Reactions Asymptotic Distribution of Degree-Based Topological Indices Note on the Minimum Bond Incident Degree Indices of k-Cyclic Graphs Sombor Index of Hypergraphs The ABC Index Conundrum's Complete Solution
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1