{"title":"边-细谷多项式的一种计算方法及其在苯上的应用","authors":"M. Knor, Niko Tratnik","doi":"10.46793/match.89-3.605k","DOIUrl":null,"url":null,"abstract":"The edge-Hosoya polynomial of a graph is the edge version of the famous Hosoya polynomial. Therefore, the edge-Hosoya polynomial counts the number of (unordered) pairs of edges at distance k ≥ 0 in a given graph. It is well known that this polynomial is closely related to the edge-Wiener index and the edge-hyper-Wiener index. As the main result of this paper, we greatly generalize an earlier result by providing a method for calculating the edge-Hosoya polynomial of a graph G which is obtained by identifying two edges of connected bipartite graphs G1 and G2. To show how the main theorem can be used, we apply it to phenylene chains. In particular, we present the recurrence relations and a linear time algorithm for calculating the edge-Hosoya polynomial of any phenylene chain. As a consequence, closed formula for the edge-Hosoya polynomial of linear phenylene chains is derived.","PeriodicalId":51115,"journal":{"name":"Match-Communications in Mathematical and in Computer Chemistry","volume":"21 1","pages":""},"PeriodicalIF":2.9000,"publicationDate":"2023-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"A Method for Computing the Edge-Hosoya Polynomial with Application to Phenylenes\",\"authors\":\"M. Knor, Niko Tratnik\",\"doi\":\"10.46793/match.89-3.605k\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The edge-Hosoya polynomial of a graph is the edge version of the famous Hosoya polynomial. Therefore, the edge-Hosoya polynomial counts the number of (unordered) pairs of edges at distance k ≥ 0 in a given graph. It is well known that this polynomial is closely related to the edge-Wiener index and the edge-hyper-Wiener index. As the main result of this paper, we greatly generalize an earlier result by providing a method for calculating the edge-Hosoya polynomial of a graph G which is obtained by identifying two edges of connected bipartite graphs G1 and G2. To show how the main theorem can be used, we apply it to phenylene chains. In particular, we present the recurrence relations and a linear time algorithm for calculating the edge-Hosoya polynomial of any phenylene chain. As a consequence, closed formula for the edge-Hosoya polynomial of linear phenylene chains is derived.\",\"PeriodicalId\":51115,\"journal\":{\"name\":\"Match-Communications in Mathematical and in Computer Chemistry\",\"volume\":\"21 1\",\"pages\":\"\"},\"PeriodicalIF\":2.9000,\"publicationDate\":\"2023-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Match-Communications in Mathematical and in Computer Chemistry\",\"FirstCategoryId\":\"92\",\"ListUrlMain\":\"https://doi.org/10.46793/match.89-3.605k\",\"RegionNum\":2,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"CHEMISTRY, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Match-Communications in Mathematical and in Computer Chemistry","FirstCategoryId":"92","ListUrlMain":"https://doi.org/10.46793/match.89-3.605k","RegionNum":2,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
A Method for Computing the Edge-Hosoya Polynomial with Application to Phenylenes
The edge-Hosoya polynomial of a graph is the edge version of the famous Hosoya polynomial. Therefore, the edge-Hosoya polynomial counts the number of (unordered) pairs of edges at distance k ≥ 0 in a given graph. It is well known that this polynomial is closely related to the edge-Wiener index and the edge-hyper-Wiener index. As the main result of this paper, we greatly generalize an earlier result by providing a method for calculating the edge-Hosoya polynomial of a graph G which is obtained by identifying two edges of connected bipartite graphs G1 and G2. To show how the main theorem can be used, we apply it to phenylene chains. In particular, we present the recurrence relations and a linear time algorithm for calculating the edge-Hosoya polynomial of any phenylene chain. As a consequence, closed formula for the edge-Hosoya polynomial of linear phenylene chains is derived.
期刊介绍:
MATCH Communications in Mathematical and in Computer Chemistry publishes papers of original research as well as reviews on chemically important mathematical results and non-routine applications of mathematical techniques to chemical problems. A paper acceptable for publication must contain non-trivial mathematics or communicate non-routine computer-based procedures AND have a clear connection to chemistry. Papers are published without any processing or publication charge.