{"title":"基于分子动力学计算的石墨烯片与SiC衬底之间的热传递","authors":"Zan Wang, Kedong Bi, H. Guan, Jiong Wang","doi":"10.1155/2014/479808","DOIUrl":null,"url":null,"abstract":"Using nonequilibrium molecular dynamics, we investigate the mechanisms of thermal transport across SiC/graphene sheets. In simulations, 3C-, 4H-, and 6H-SiC are considered separately. Interfacial thermal resistances between Bernal stacking graphene sheets and SiC (Si- or C-terminated) are calculated at the ranges of 100 K~700 K. The results indicate, whether Si-terminated or C-terminated interface, the interfacial thermal resistances of 4H- and 6H-SiC have similar trends over temperatures. Si-terminated interfacial thermal resistances of 3C-SiC are higher than those of 4H- and 6H-SiC in a wide temperature range from 100 K to 600 K. But, for C-rich interface, this range is reduced from 350 K to 500 K.","PeriodicalId":17611,"journal":{"name":"Journal: Materials","volume":"22 1","pages":"1-5"},"PeriodicalIF":0.0000,"publicationDate":"2014-04-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"4","resultStr":"{\"title\":\"Thermal Transport between Graphene Sheets and SiC Substrate by Molecular-Dynamical Calculation\",\"authors\":\"Zan Wang, Kedong Bi, H. Guan, Jiong Wang\",\"doi\":\"10.1155/2014/479808\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Using nonequilibrium molecular dynamics, we investigate the mechanisms of thermal transport across SiC/graphene sheets. In simulations, 3C-, 4H-, and 6H-SiC are considered separately. Interfacial thermal resistances between Bernal stacking graphene sheets and SiC (Si- or C-terminated) are calculated at the ranges of 100 K~700 K. The results indicate, whether Si-terminated or C-terminated interface, the interfacial thermal resistances of 4H- and 6H-SiC have similar trends over temperatures. Si-terminated interfacial thermal resistances of 3C-SiC are higher than those of 4H- and 6H-SiC in a wide temperature range from 100 K to 600 K. But, for C-rich interface, this range is reduced from 350 K to 500 K.\",\"PeriodicalId\":17611,\"journal\":{\"name\":\"Journal: Materials\",\"volume\":\"22 1\",\"pages\":\"1-5\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2014-04-23\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"4\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal: Materials\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1155/2014/479808\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal: Materials","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1155/2014/479808","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Thermal Transport between Graphene Sheets and SiC Substrate by Molecular-Dynamical Calculation
Using nonequilibrium molecular dynamics, we investigate the mechanisms of thermal transport across SiC/graphene sheets. In simulations, 3C-, 4H-, and 6H-SiC are considered separately. Interfacial thermal resistances between Bernal stacking graphene sheets and SiC (Si- or C-terminated) are calculated at the ranges of 100 K~700 K. The results indicate, whether Si-terminated or C-terminated interface, the interfacial thermal resistances of 4H- and 6H-SiC have similar trends over temperatures. Si-terminated interfacial thermal resistances of 3C-SiC are higher than those of 4H- and 6H-SiC in a wide temperature range from 100 K to 600 K. But, for C-rich interface, this range is reduced from 350 K to 500 K.