血栓形成的数值模拟

N. Ramunigari, Debarshi Roy
{"title":"血栓形成的数值模拟","authors":"N. Ramunigari, Debarshi Roy","doi":"10.4103/2229-5186.115552","DOIUrl":null,"url":null,"abstract":"Background: Mathematical approaches for biological events have gained significant importance in development of biomedical research. Deep vein thrombosis (DVT) is caused by blood clot in veins deeply rooted in the body, resulting in loss of blood, pain, and numbness of the body part associated with that vein. This situation can get complicated and can be fatal, when the blood clot travels to other parts of the body which may result in pulmonary embolism (PE). PE causes approximately 300,000 deaths annually in the United States alone. Materials and Methods: We are trying to propose a computational approach for understanding venous thrombosis using the theory of fluid mechanics. In our study, we are trying to establish a computational model that mimics the venous blood flow containing unidirectional venous valves and will be depicting the blood flow in the veins. We analyzed the flow patterns in veins, which are included with lump like substances. This lump like substances can be clots, tissue debris, collagen or even cholesterol. Our study will facilitate better understanding of the biophysical process in case of thrombosis. Results: The predicted model analyzes the consequences that occur due to the clot formations in veins. Knowledge of Navier-Stokes equations in fluid dynamics along with the computational model of a complex biological system would help in diagnosis of the problem at much faster rate of time. Valves of the deep veins are damaged as a result of DVT, with no valves to prevent deep system reflux, the hydrostatic venous pressure in the lower extremity increases dramatically. Conclusion: Our model is used to determine the effects of an interrupted blood flow as a result of thrombin formation, which might result in disturbed systemic circulation. Our results indicated a positive inverse correlation exists between clots and the flow velocity. This would support medical practitioners to recommend faster curing measures.","PeriodicalId":10187,"journal":{"name":"Chronicles of Young Scientists","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2013-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"4","resultStr":"{\"title\":\"Numerical simulations of thrombosis\",\"authors\":\"N. Ramunigari, Debarshi Roy\",\"doi\":\"10.4103/2229-5186.115552\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Background: Mathematical approaches for biological events have gained significant importance in development of biomedical research. Deep vein thrombosis (DVT) is caused by blood clot in veins deeply rooted in the body, resulting in loss of blood, pain, and numbness of the body part associated with that vein. This situation can get complicated and can be fatal, when the blood clot travels to other parts of the body which may result in pulmonary embolism (PE). PE causes approximately 300,000 deaths annually in the United States alone. Materials and Methods: We are trying to propose a computational approach for understanding venous thrombosis using the theory of fluid mechanics. In our study, we are trying to establish a computational model that mimics the venous blood flow containing unidirectional venous valves and will be depicting the blood flow in the veins. We analyzed the flow patterns in veins, which are included with lump like substances. This lump like substances can be clots, tissue debris, collagen or even cholesterol. Our study will facilitate better understanding of the biophysical process in case of thrombosis. Results: The predicted model analyzes the consequences that occur due to the clot formations in veins. Knowledge of Navier-Stokes equations in fluid dynamics along with the computational model of a complex biological system would help in diagnosis of the problem at much faster rate of time. Valves of the deep veins are damaged as a result of DVT, with no valves to prevent deep system reflux, the hydrostatic venous pressure in the lower extremity increases dramatically. Conclusion: Our model is used to determine the effects of an interrupted blood flow as a result of thrombin formation, which might result in disturbed systemic circulation. Our results indicated a positive inverse correlation exists between clots and the flow velocity. This would support medical practitioners to recommend faster curing measures.\",\"PeriodicalId\":10187,\"journal\":{\"name\":\"Chronicles of Young Scientists\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2013-07-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"4\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Chronicles of Young Scientists\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.4103/2229-5186.115552\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Chronicles of Young Scientists","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.4103/2229-5186.115552","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 4

摘要

背景:生物事件的数学方法在生物医学研究的发展中具有重要意义。深静脉血栓形成(DVT)是由于血液凝块在深植于体内的静脉中,导致与该静脉相关的身体部位失血、疼痛和麻木而引起的。这种情况可能会变得复杂,甚至是致命的,当血凝块移动到身体的其他部位时,可能导致肺栓塞(PE)。仅在美国,PE每年就导致大约30万人死亡。材料和方法:我们正试图提出一种利用流体力学理论来理解静脉血栓形成的计算方法。在我们的研究中,我们试图建立一个计算模型来模拟含有单向静脉瓣膜的静脉血流,并将描绘静脉中的血流。我们分析了静脉中的流动模式,其中包括块状物质。这种块状物质可能是血块、组织碎片、胶原蛋白甚至胆固醇。我们的研究将有助于更好地理解血栓形成的生物物理过程。结果:预测模型分析了静脉血栓形成的后果。流体动力学中的Navier-Stokes方程知识以及复杂生物系统的计算模型将有助于以更快的速度诊断问题。深静脉瓣膜因深静脉血栓而受损,没有瓣膜来防止深部系统反流,下肢静液静脉压力急剧增加。结论:我们的模型用于确定凝血酶形成导致的血流中断的影响,凝血酶形成可能导致体循环紊乱。结果表明,血凝块与血流速度呈负相关。这将支持医生推荐更快的治疗措施。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Numerical simulations of thrombosis
Background: Mathematical approaches for biological events have gained significant importance in development of biomedical research. Deep vein thrombosis (DVT) is caused by blood clot in veins deeply rooted in the body, resulting in loss of blood, pain, and numbness of the body part associated with that vein. This situation can get complicated and can be fatal, when the blood clot travels to other parts of the body which may result in pulmonary embolism (PE). PE causes approximately 300,000 deaths annually in the United States alone. Materials and Methods: We are trying to propose a computational approach for understanding venous thrombosis using the theory of fluid mechanics. In our study, we are trying to establish a computational model that mimics the venous blood flow containing unidirectional venous valves and will be depicting the blood flow in the veins. We analyzed the flow patterns in veins, which are included with lump like substances. This lump like substances can be clots, tissue debris, collagen or even cholesterol. Our study will facilitate better understanding of the biophysical process in case of thrombosis. Results: The predicted model analyzes the consequences that occur due to the clot formations in veins. Knowledge of Navier-Stokes equations in fluid dynamics along with the computational model of a complex biological system would help in diagnosis of the problem at much faster rate of time. Valves of the deep veins are damaged as a result of DVT, with no valves to prevent deep system reflux, the hydrostatic venous pressure in the lower extremity increases dramatically. Conclusion: Our model is used to determine the effects of an interrupted blood flow as a result of thrombin formation, which might result in disturbed systemic circulation. Our results indicated a positive inverse correlation exists between clots and the flow velocity. This would support medical practitioners to recommend faster curing measures.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Periodontal status in pregnant women in comparison with non-pregnant individuals Pharmacological evaluation of anxiolytic property of aqueous root extract of Cymbopogon citratus in mice Anesthetic considerations in Townes-Brocks syndrome Formulation and optimization of mucoadhesive microemulsion containing mirtazapine for intranasal delivery Beneficial effect of extracts of Premna integrifolia root on human leucocytes and erythrocytes against hydrogen peroxide induced oxidative damage
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1