{"title":"生物界面水凝胶4D打印研究进展","authors":"Huanhui Wang, Jianpeng Guo","doi":"10.1007/s12289-023-01778-9","DOIUrl":null,"url":null,"abstract":"<div><p>4D printed hydrogels are 3D printed objects whose properties and functions are programmable. In the definition of 4D printing, the fourth dimension arises from the ability of printed structures to change their shape and/or function over time when exposed to given conditions environmental stimuli, during their post-press life. Stimulation-responsive hydrogels produced by the emerging 4D bioprinting technology are currently considered as encouraging tools for various biomedical applications due to their exciting properties such as stretchability, biocompatibility, ultra-flexibility, and printability. Using 3D printing technology, customized functional structures with controllable geometry and trigger ability can be autonomously printed onto desired biological interfaces without considering microfabrication techniques. In this review, by studying the progress in the field of hydrogels for biointerfaces, we summarized the techniques of 4D printing gels, the classification of bioinks, the design strategies of actuators. In addition, we also introduced the applications of 4D hydrogels in tissue repair, vascular grafts, drug delivery, and wearable sensors. Comprehensive insights into the constraints, critical requirements for 4D bioprinting including the biocompatibility of materials, precise designs for meticulous transformations, and individual variability in biological interfaces.</p></div>","PeriodicalId":591,"journal":{"name":"International Journal of Material Forming","volume":"16 5","pages":""},"PeriodicalIF":2.6000,"publicationDate":"2023-08-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Recent advances in 4D printing hydrogel for biological interfaces\",\"authors\":\"Huanhui Wang, Jianpeng Guo\",\"doi\":\"10.1007/s12289-023-01778-9\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>4D printed hydrogels are 3D printed objects whose properties and functions are programmable. In the definition of 4D printing, the fourth dimension arises from the ability of printed structures to change their shape and/or function over time when exposed to given conditions environmental stimuli, during their post-press life. Stimulation-responsive hydrogels produced by the emerging 4D bioprinting technology are currently considered as encouraging tools for various biomedical applications due to their exciting properties such as stretchability, biocompatibility, ultra-flexibility, and printability. Using 3D printing technology, customized functional structures with controllable geometry and trigger ability can be autonomously printed onto desired biological interfaces without considering microfabrication techniques. In this review, by studying the progress in the field of hydrogels for biointerfaces, we summarized the techniques of 4D printing gels, the classification of bioinks, the design strategies of actuators. In addition, we also introduced the applications of 4D hydrogels in tissue repair, vascular grafts, drug delivery, and wearable sensors. Comprehensive insights into the constraints, critical requirements for 4D bioprinting including the biocompatibility of materials, precise designs for meticulous transformations, and individual variability in biological interfaces.</p></div>\",\"PeriodicalId\":591,\"journal\":{\"name\":\"International Journal of Material Forming\",\"volume\":\"16 5\",\"pages\":\"\"},\"PeriodicalIF\":2.6000,\"publicationDate\":\"2023-08-10\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"International Journal of Material Forming\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://link.springer.com/article/10.1007/s12289-023-01778-9\",\"RegionNum\":3,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"ENGINEERING, MANUFACTURING\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Material Forming","FirstCategoryId":"88","ListUrlMain":"https://link.springer.com/article/10.1007/s12289-023-01778-9","RegionNum":3,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENGINEERING, MANUFACTURING","Score":null,"Total":0}
Recent advances in 4D printing hydrogel for biological interfaces
4D printed hydrogels are 3D printed objects whose properties and functions are programmable. In the definition of 4D printing, the fourth dimension arises from the ability of printed structures to change their shape and/or function over time when exposed to given conditions environmental stimuli, during their post-press life. Stimulation-responsive hydrogels produced by the emerging 4D bioprinting technology are currently considered as encouraging tools for various biomedical applications due to their exciting properties such as stretchability, biocompatibility, ultra-flexibility, and printability. Using 3D printing technology, customized functional structures with controllable geometry and trigger ability can be autonomously printed onto desired biological interfaces without considering microfabrication techniques. In this review, by studying the progress in the field of hydrogels for biointerfaces, we summarized the techniques of 4D printing gels, the classification of bioinks, the design strategies of actuators. In addition, we also introduced the applications of 4D hydrogels in tissue repair, vascular grafts, drug delivery, and wearable sensors. Comprehensive insights into the constraints, critical requirements for 4D bioprinting including the biocompatibility of materials, precise designs for meticulous transformations, and individual variability in biological interfaces.
期刊介绍:
The Journal publishes and disseminates original research in the field of material forming. The research should constitute major achievements in the understanding, modeling or simulation of material forming processes. In this respect ‘forming’ implies a deliberate deformation of material.
The journal establishes a platform of communication between engineers and scientists, covering all forming processes, including sheet forming, bulk forming, powder forming, forming in near-melt conditions (injection moulding, thixoforming, film blowing etc.), micro-forming, hydro-forming, thermo-forming, incremental forming etc. Other manufacturing technologies like machining and cutting can be included if the focus of the work is on plastic deformations.
All materials (metals, ceramics, polymers, composites, glass, wood, fibre reinforced materials, materials in food processing, biomaterials, nano-materials, shape memory alloys etc.) and approaches (micro-macro modelling, thermo-mechanical modelling, numerical simulation including new and advanced numerical strategies, experimental analysis, inverse analysis, model identification, optimization, design and control of forming tools and machines, wear and friction, mechanical behavior and formability of materials etc.) are concerned.