广义线性模型对稀疏数据的拟合优度评价

C. Farrington
{"title":"广义线性模型对稀疏数据的拟合优度评价","authors":"C. Farrington","doi":"10.1111/J.2517-6161.1996.TB02086.X","DOIUrl":null,"url":null,"abstract":"SUMMARY Approximations to the first three moments of Pearson's statistic are obtained for noncanonical generalized linear models, extending the results of McCullagh. A first-order modification to Pearson's statistic is proposed which induces local orthogonality with the regression parameters, resulting in substantial simplifications and increased power. Accurate and easily computed approximations to the moments of the modified Pearson statistic conditional on the estimated regression parameters are obtained for testing goodness of fit to sparse data. Both the Pearson statistic and its modification are shown to be asymptotically independent of the regression parameters. Simulation studies and examples are given.","PeriodicalId":17425,"journal":{"name":"Journal of the royal statistical society series b-methodological","volume":"8 1","pages":"349-360"},"PeriodicalIF":0.0000,"publicationDate":"1996-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"42","resultStr":"{\"title\":\"On Assessing goodness of fit of generalized linear models to sparse data\",\"authors\":\"C. Farrington\",\"doi\":\"10.1111/J.2517-6161.1996.TB02086.X\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"SUMMARY Approximations to the first three moments of Pearson's statistic are obtained for noncanonical generalized linear models, extending the results of McCullagh. A first-order modification to Pearson's statistic is proposed which induces local orthogonality with the regression parameters, resulting in substantial simplifications and increased power. Accurate and easily computed approximations to the moments of the modified Pearson statistic conditional on the estimated regression parameters are obtained for testing goodness of fit to sparse data. Both the Pearson statistic and its modification are shown to be asymptotically independent of the regression parameters. Simulation studies and examples are given.\",\"PeriodicalId\":17425,\"journal\":{\"name\":\"Journal of the royal statistical society series b-methodological\",\"volume\":\"8 1\",\"pages\":\"349-360\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"1996-07-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"42\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of the royal statistical society series b-methodological\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1111/J.2517-6161.1996.TB02086.X\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of the royal statistical society series b-methodological","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1111/J.2517-6161.1996.TB02086.X","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 42

摘要

得到了非正则广义线性模型的Pearson统计量前三个矩的近似,推广了McCullagh的结果。提出了对Pearson统计量的一阶修正,引入了回归参数的局部正交性,从而大大简化了求解过程,提高了求解效率。在估计回归参数的条件下,得到修正Pearson统计量矩的精确且易于计算的近似值,以检验稀疏数据的拟合优度。皮尔逊统计量及其修正量均显示与回归参数渐近无关。给出了仿真研究和实例。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
On Assessing goodness of fit of generalized linear models to sparse data
SUMMARY Approximations to the first three moments of Pearson's statistic are obtained for noncanonical generalized linear models, extending the results of McCullagh. A first-order modification to Pearson's statistic is proposed which induces local orthogonality with the regression parameters, resulting in substantial simplifications and increased power. Accurate and easily computed approximations to the moments of the modified Pearson statistic conditional on the estimated regression parameters are obtained for testing goodness of fit to sparse data. Both the Pearson statistic and its modification are shown to be asymptotically independent of the regression parameters. Simulation studies and examples are given.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Proposal of the vote of thanks in discussion of Cule, M., Samworth, R., and Stewart, M.: Maximum likelihood estimation of a multidimensional logconcave density On Assessing goodness of fit of generalized linear models to sparse data Bayes Linear Sufficiency and Systems of Expert Posterior Assessments On the Choice of Smoothing Parameter, Threshold and Truncation in Nonparametric Regression by Non-linear Wavelet Methods Quasi‐Likelihood and Generalizing the Em Algorithm
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1