通过调节离子和电子活性亚基实现高效储能:用于大量快速储存 Na+ 的 (SbS)1.15TiS2 超晶格

IF 10.4 1区 化学 Q1 CHEMISTRY, MULTIDISCIPLINARY Science China Chemistry Pub Date : 2023-08-25 DOI:10.1007/s11426-023-1699-x
Baixin Peng, Tianxun Cai, Shaoning Zhang, Yuqiang Fang, Zhuoran Lv, Yusha Gao, Fuqiang Huang
{"title":"通过调节离子和电子活性亚基实现高效储能:用于大量快速储存 Na+ 的 (SbS)1.15TiS2 超晶格","authors":"Baixin Peng,&nbsp;Tianxun Cai,&nbsp;Shaoning Zhang,&nbsp;Yuqiang Fang,&nbsp;Zhuoran Lv,&nbsp;Yusha Gao,&nbsp;Fuqiang Huang","doi":"10.1007/s11426-023-1699-x","DOIUrl":null,"url":null,"abstract":"<div><p>Alloying-type metal sulfides with high sodiation activity and theoretical capacity are promising anode materials for high energy density sodium ion batteries. However, the large volume change and the migratory and aggregation behavior of metal atoms will cause severe capacity decay during the charge/discharge process. Herein, a robust and conductive TiS<sub>2</sub> framework is integrated with a high-capacity SbS layer to construct a single phase (SbS)<sub>1.15</sub>TiS<sub>2</sub> superlattice for both high-capacity and fast Na<sup>+</sup> storage. The metallic TiS<sub>2</sub> sublayer with high electron activity acts as a robust and conductive skeleton to buffer the volume expansion caused by conversion and alloying reaction between Na<sup>+</sup> and SbS sublayer. Hence, high capacity and high rate capability can be synergistically realized in a single phase (SbS)<sub>1.15</sub>TiS<sub>2</sub> superlattice. The novel (SbS)<sub>1.15</sub>TiS<sub>2</sub> anode has a high charge capacity of 618 mAh g<sup>−1</sup> at 0.2 C and superior rate performance and cycling stability (205 mAh g<sup>−1</sup> at 35 C after 2,000 cycles). Furthermore, <i>in situ</i> and <i>ex situ</i> characterizations are applied to get an insight into the multi-step reaction mechanism. The integrity of robust Na-Ti-S skeleton during (dis)charge process can be confirmed. This superlattice construction idea to integrate the Na<sup>+</sup>-active unit and electron-active unit would provide a new avenue for exploring high-performance anode materials for advanced sodium-ion batteries.</p><div><figure><div><div><picture><source><img></source></picture></div></div></figure></div></div>","PeriodicalId":772,"journal":{"name":"Science China Chemistry","volume":"67 1","pages":"336 - 342"},"PeriodicalIF":10.4000,"publicationDate":"2023-08-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Unlocking efficient energy storage via regulating ion and electron-active subunits: an (SbS)1.15TiS2 superlattice for large and fast Na+ storage\",\"authors\":\"Baixin Peng,&nbsp;Tianxun Cai,&nbsp;Shaoning Zhang,&nbsp;Yuqiang Fang,&nbsp;Zhuoran Lv,&nbsp;Yusha Gao,&nbsp;Fuqiang Huang\",\"doi\":\"10.1007/s11426-023-1699-x\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>Alloying-type metal sulfides with high sodiation activity and theoretical capacity are promising anode materials for high energy density sodium ion batteries. However, the large volume change and the migratory and aggregation behavior of metal atoms will cause severe capacity decay during the charge/discharge process. Herein, a robust and conductive TiS<sub>2</sub> framework is integrated with a high-capacity SbS layer to construct a single phase (SbS)<sub>1.15</sub>TiS<sub>2</sub> superlattice for both high-capacity and fast Na<sup>+</sup> storage. The metallic TiS<sub>2</sub> sublayer with high electron activity acts as a robust and conductive skeleton to buffer the volume expansion caused by conversion and alloying reaction between Na<sup>+</sup> and SbS sublayer. Hence, high capacity and high rate capability can be synergistically realized in a single phase (SbS)<sub>1.15</sub>TiS<sub>2</sub> superlattice. The novel (SbS)<sub>1.15</sub>TiS<sub>2</sub> anode has a high charge capacity of 618 mAh g<sup>−1</sup> at 0.2 C and superior rate performance and cycling stability (205 mAh g<sup>−1</sup> at 35 C after 2,000 cycles). Furthermore, <i>in situ</i> and <i>ex situ</i> characterizations are applied to get an insight into the multi-step reaction mechanism. The integrity of robust Na-Ti-S skeleton during (dis)charge process can be confirmed. This superlattice construction idea to integrate the Na<sup>+</sup>-active unit and electron-active unit would provide a new avenue for exploring high-performance anode materials for advanced sodium-ion batteries.</p><div><figure><div><div><picture><source><img></source></picture></div></div></figure></div></div>\",\"PeriodicalId\":772,\"journal\":{\"name\":\"Science China Chemistry\",\"volume\":\"67 1\",\"pages\":\"336 - 342\"},\"PeriodicalIF\":10.4000,\"publicationDate\":\"2023-08-25\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Science China Chemistry\",\"FirstCategoryId\":\"1\",\"ListUrlMain\":\"https://link.springer.com/article/10.1007/s11426-023-1699-x\",\"RegionNum\":1,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CHEMISTRY, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Science China Chemistry","FirstCategoryId":"1","ListUrlMain":"https://link.springer.com/article/10.1007/s11426-023-1699-x","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

摘要

合金型金属硫化物具有很高的钠化活性和理论容量,是很有前途的高能量密度钠离子电池阳极材料。然而,在充放电过程中,金属原子的大体积变化和迁移聚集行为会导致严重的容量衰减。在此,我们将坚固的导电 TiS2 框架与高容量的 SbS 层整合在一起,构建了单相 (SbS)1.15TiS2 超晶格,实现了高容量和快速 Na+ 储存。具有高电子活度的金属 TiS2 子层可作为坚固的导电骨架,缓冲 Na+ 与 SbS 子层之间的转换和合金化反应引起的体积膨胀。因此,在单相(SbS)1.15TiS2 超晶格中可以协同实现高容量和高速率能力。新型 (SbS)1.15TiS2 阳极在 0.2 摄氏度时的充电容量高达 618 mAh g-1,并具有优异的速率性能和循环稳定性(2,000 次循环后,在 35 摄氏度时的容量为 205 mAh g-1)。此外,为了深入了解多步反应机制,还采用了原位和非原位表征方法。在(放电)过程中,Na-Ti-S 骨架的完整性得到了证实。这种将 Na+ 活性单元和电子活性单元整合在一起的超晶格构造理念将为探索先进钠离子电池的高性能负极材料提供一条新途径。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Unlocking efficient energy storage via regulating ion and electron-active subunits: an (SbS)1.15TiS2 superlattice for large and fast Na+ storage

Alloying-type metal sulfides with high sodiation activity and theoretical capacity are promising anode materials for high energy density sodium ion batteries. However, the large volume change and the migratory and aggregation behavior of metal atoms will cause severe capacity decay during the charge/discharge process. Herein, a robust and conductive TiS2 framework is integrated with a high-capacity SbS layer to construct a single phase (SbS)1.15TiS2 superlattice for both high-capacity and fast Na+ storage. The metallic TiS2 sublayer with high electron activity acts as a robust and conductive skeleton to buffer the volume expansion caused by conversion and alloying reaction between Na+ and SbS sublayer. Hence, high capacity and high rate capability can be synergistically realized in a single phase (SbS)1.15TiS2 superlattice. The novel (SbS)1.15TiS2 anode has a high charge capacity of 618 mAh g−1 at 0.2 C and superior rate performance and cycling stability (205 mAh g−1 at 35 C after 2,000 cycles). Furthermore, in situ and ex situ characterizations are applied to get an insight into the multi-step reaction mechanism. The integrity of robust Na-Ti-S skeleton during (dis)charge process can be confirmed. This superlattice construction idea to integrate the Na+-active unit and electron-active unit would provide a new avenue for exploring high-performance anode materials for advanced sodium-ion batteries.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Science China Chemistry
Science China Chemistry CHEMISTRY, MULTIDISCIPLINARY-
CiteScore
14.40
自引率
7.30%
发文量
3787
审稿时长
2.2 months
期刊介绍: Science China Chemistry, co-sponsored by the Chinese Academy of Sciences and the National Natural Science Foundation of China and published by Science China Press, publishes high-quality original research in both basic and applied chemistry. Indexed by Science Citation Index, it is a premier academic journal in the field. Categories of articles include: Highlights. Brief summaries and scholarly comments on recent research achievements in any field of chemistry. Perspectives. Concise reports on thelatest chemistry trends of interest to scientists worldwide, including discussions of research breakthroughs and interpretations of important science and funding policies. Reviews. In-depth summaries of representative results and achievements of the past 5–10 years in selected topics based on or closely related to the research expertise of the authors, providing a thorough assessment of the significance, current status, and future research directions of the field.
期刊最新文献
Relay C(sp3)-H bond trifluoromethylthiolation and amidation by visible light photoredox catalysis Enantioselective iridium-catalyzed allylic substitution with a Reformatsky reagent: direct construction of β-stereogenic homoallylic esters Thioredoxin pathway regulated live-cell synthesis of CdSe quantum dots in Saccharomyces cerevisiae Porous organic cages as a novel platform for second harmonic generation Tandem electrocatalysis for CO2 reduction to multi-carbons
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1