{"title":"基于Laguerre函数的风力发电机执行器故障容错模型预测控制","authors":"Amir Tasdighi, M. Menhaj","doi":"10.1109/IranianCEE.2019.8786400","DOIUrl":null,"url":null,"abstract":"The use of wind power, as a major source of renewable energy, has been growing worldwide in recent decades. A large number of wind turbine (WT) generators has been deployed on wind farms located at both land and sea areas to meet the ever increasing demand for alternative energy resources. In order to improve the efficiency and the reliability of WTs, advanced fault detection, diagnosis and accommodation plans are of great importance. This paper proposes a model predictive controller using Laguerre functions with the aim of designing a fault tolerant control scheme which ensures the reliable performance of wind turbine in case of fault occurrence in the WT's pitch and generator actuators. In addition, a model-based strategy relying on recursive least squares (RLS) algorithm is proposed for fault identification. We provide an analytical stability analysis of the controller through the Lyapunov function candidate. The accuracy and the efficiency of the proposed method is evaluated and compared with conventional controllers in two different scenarios, namely, in the presence of actuator faults and in a fault-free system.","PeriodicalId":6683,"journal":{"name":"2019 27th Iranian Conference on Electrical Engineering (ICEE)","volume":"340 1","pages":"898-903"},"PeriodicalIF":0.0000,"publicationDate":"2019-04-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Fault Tolerant Model Predictive Control of Wind Turbine Against Actuator Faults Using Laguerre Functions\",\"authors\":\"Amir Tasdighi, M. Menhaj\",\"doi\":\"10.1109/IranianCEE.2019.8786400\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The use of wind power, as a major source of renewable energy, has been growing worldwide in recent decades. A large number of wind turbine (WT) generators has been deployed on wind farms located at both land and sea areas to meet the ever increasing demand for alternative energy resources. In order to improve the efficiency and the reliability of WTs, advanced fault detection, diagnosis and accommodation plans are of great importance. This paper proposes a model predictive controller using Laguerre functions with the aim of designing a fault tolerant control scheme which ensures the reliable performance of wind turbine in case of fault occurrence in the WT's pitch and generator actuators. In addition, a model-based strategy relying on recursive least squares (RLS) algorithm is proposed for fault identification. We provide an analytical stability analysis of the controller through the Lyapunov function candidate. The accuracy and the efficiency of the proposed method is evaluated and compared with conventional controllers in two different scenarios, namely, in the presence of actuator faults and in a fault-free system.\",\"PeriodicalId\":6683,\"journal\":{\"name\":\"2019 27th Iranian Conference on Electrical Engineering (ICEE)\",\"volume\":\"340 1\",\"pages\":\"898-903\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2019-04-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2019 27th Iranian Conference on Electrical Engineering (ICEE)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/IranianCEE.2019.8786400\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2019 27th Iranian Conference on Electrical Engineering (ICEE)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/IranianCEE.2019.8786400","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Fault Tolerant Model Predictive Control of Wind Turbine Against Actuator Faults Using Laguerre Functions
The use of wind power, as a major source of renewable energy, has been growing worldwide in recent decades. A large number of wind turbine (WT) generators has been deployed on wind farms located at both land and sea areas to meet the ever increasing demand for alternative energy resources. In order to improve the efficiency and the reliability of WTs, advanced fault detection, diagnosis and accommodation plans are of great importance. This paper proposes a model predictive controller using Laguerre functions with the aim of designing a fault tolerant control scheme which ensures the reliable performance of wind turbine in case of fault occurrence in the WT's pitch and generator actuators. In addition, a model-based strategy relying on recursive least squares (RLS) algorithm is proposed for fault identification. We provide an analytical stability analysis of the controller through the Lyapunov function candidate. The accuracy and the efficiency of the proposed method is evaluated and compared with conventional controllers in two different scenarios, namely, in the presence of actuator faults and in a fault-free system.