基于弹性网回归的独特光谱空间贝叶斯框架用于高光谱图像分类

B. N. Soomro, N. A. Jaffar, S. Bhatti, L. A. Thebo
{"title":"基于弹性网回归的独特光谱空间贝叶斯框架用于高光谱图像分类","authors":"B. N. Soomro, N. A. Jaffar, S. Bhatti, L. A. Thebo","doi":"10.26692/surj/2019.09.87","DOIUrl":null,"url":null,"abstract":"This article presents not to simply a unique two stage regularization/shrinkage estimator for regression; rather, explicit to make the Bayesian framework connection to the Elastic Net procedure via the post-processed Edge preserving filtering which consist of two steps. We evaluated the quality of bands with pixel-based classifier associated with the Elastic Net based regularized regression. Next, spatial contextual information is used for refining the classification results obtained in the first step. This is achieved by means of a generic but powerful bilateral filtering post-processing, with a color guidance image retrieved from the principal components of the hyper-spectral image. Under the generalized Elastic Net framework, our proposed model showed the less time complexity. When comparing three widely used hyper-spectral data sets with the other classification methods, our method has shown the noticeable classification accuracy while the number of training samples is relatively small.","PeriodicalId":21635,"journal":{"name":"SINDH UNIVERSITY RESEARCH JOURNAL -SCIENCE SERIES","volume":"23 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2019-09-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"A Unique Spectral Spatial Bayesian Framework via Elastic Net Regression for the Classification of Hyperspectral images\",\"authors\":\"B. N. Soomro, N. A. Jaffar, S. Bhatti, L. A. Thebo\",\"doi\":\"10.26692/surj/2019.09.87\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This article presents not to simply a unique two stage regularization/shrinkage estimator for regression; rather, explicit to make the Bayesian framework connection to the Elastic Net procedure via the post-processed Edge preserving filtering which consist of two steps. We evaluated the quality of bands with pixel-based classifier associated with the Elastic Net based regularized regression. Next, spatial contextual information is used for refining the classification results obtained in the first step. This is achieved by means of a generic but powerful bilateral filtering post-processing, with a color guidance image retrieved from the principal components of the hyper-spectral image. Under the generalized Elastic Net framework, our proposed model showed the less time complexity. When comparing three widely used hyper-spectral data sets with the other classification methods, our method has shown the noticeable classification accuracy while the number of training samples is relatively small.\",\"PeriodicalId\":21635,\"journal\":{\"name\":\"SINDH UNIVERSITY RESEARCH JOURNAL -SCIENCE SERIES\",\"volume\":\"23 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2019-09-17\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"SINDH UNIVERSITY RESEARCH JOURNAL -SCIENCE SERIES\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.26692/surj/2019.09.87\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"SINDH UNIVERSITY RESEARCH JOURNAL -SCIENCE SERIES","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.26692/surj/2019.09.87","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

本文不仅给出了一个唯一的两阶段正则化/收缩估计;相反,明确地使贝叶斯框架连接到弹性网过程中,通过后处理的边缘保持滤波,其中包括两个步骤。我们使用基于像素的分类器和基于弹性网的正则化回归来评估波段的质量。接下来,利用空间上下文信息对第一步得到的分类结果进行细化。这是通过一种通用但功能强大的双边滤波后处理手段实现的,并从高光谱图像的主成分中检索颜色指导图像。在广义弹性网框架下,该模型具有较低的时间复杂度。将三种被广泛使用的高光谱数据集与其他分类方法进行比较,我们的方法在训练样本数量相对较少的情况下显示出明显的分类精度。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
A Unique Spectral Spatial Bayesian Framework via Elastic Net Regression for the Classification of Hyperspectral images
This article presents not to simply a unique two stage regularization/shrinkage estimator for regression; rather, explicit to make the Bayesian framework connection to the Elastic Net procedure via the post-processed Edge preserving filtering which consist of two steps. We evaluated the quality of bands with pixel-based classifier associated with the Elastic Net based regularized regression. Next, spatial contextual information is used for refining the classification results obtained in the first step. This is achieved by means of a generic but powerful bilateral filtering post-processing, with a color guidance image retrieved from the principal components of the hyper-spectral image. Under the generalized Elastic Net framework, our proposed model showed the less time complexity. When comparing three widely used hyper-spectral data sets with the other classification methods, our method has shown the noticeable classification accuracy while the number of training samples is relatively small.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Structural Analysis of Ranikot Anticline, Southern Kirthar Fold Belt, Pakistan Evaluation of Antimicrobial Susceptibility Patterns of Bacteria in Pus Samples of Last Three Years at Chaghi Laboratory, Quetta, Pakistan Bioaccumulation of two macro-elements (Sodium and Potassium) in relation to body size and condition factor of Notopterus chitala from River Indus, Ghazi Ghat, Pakistan An Estimation of the Land Surface Temperature, Derived from the Landsat Satellite, for the Major Cities in Sindh Province, Pakistan The Screening of Pakistani Wheat Landraces to Stem Rust (Puccinia gramminis f. sp. tritici) resistance under field conditions.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1