基于MATLAB的脑MRI分割性能与分析

G. Devi
{"title":"基于MATLAB的脑MRI分割性能与分析","authors":"G. Devi","doi":"10.1063/5.0058053","DOIUrl":null,"url":null,"abstract":"In this paper, “Brain MR Image Intensity in homogeneity estimation and Segmentation using Modified Local Intensity Clustering” is proposed. This method is applied on synthetic data taken from brain web simulated database which are taken at to 1.5T and three T MR of Simons MRI Scanner. The efficient, simultaneous intensity in homogeneity correction, noise reduction and tissue segmentation is obtained with this algorithm. A modified coherent local intensity clustering phenomenon along with chambolle’s fast twin emesis manner is applied on a dataset of 50 brain MR images. Parenthetically the overall effectively of powerful algorithm over other intensity in homogeneity and tissue segmentation algorithms. The proposed algorithm is compared with the unified segmentation methods, “FCM, Kernel FCM and Multiplicative Intrinsic Component Optimization (MICO)”, In terms of time response, the simulation results obtained are superior., Jaccard Similarity Index Measure and Dice similarity coefficient it is ended a utilize the qualified energy usable role model closet capable of achieve JSIM is 0.988 and DSC is 0.99.","PeriodicalId":21797,"journal":{"name":"SEVENTH INTERNATIONAL SYMPOSIUM ON NEGATIVE IONS, BEAMS AND SOURCES (NIBS 2020)","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2021-07-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Performance and analysis of brain MRI segmentation in MATLAB\",\"authors\":\"G. Devi\",\"doi\":\"10.1063/5.0058053\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this paper, “Brain MR Image Intensity in homogeneity estimation and Segmentation using Modified Local Intensity Clustering” is proposed. This method is applied on synthetic data taken from brain web simulated database which are taken at to 1.5T and three T MR of Simons MRI Scanner. The efficient, simultaneous intensity in homogeneity correction, noise reduction and tissue segmentation is obtained with this algorithm. A modified coherent local intensity clustering phenomenon along with chambolle’s fast twin emesis manner is applied on a dataset of 50 brain MR images. Parenthetically the overall effectively of powerful algorithm over other intensity in homogeneity and tissue segmentation algorithms. The proposed algorithm is compared with the unified segmentation methods, “FCM, Kernel FCM and Multiplicative Intrinsic Component Optimization (MICO)”, In terms of time response, the simulation results obtained are superior., Jaccard Similarity Index Measure and Dice similarity coefficient it is ended a utilize the qualified energy usable role model closet capable of achieve JSIM is 0.988 and DSC is 0.99.\",\"PeriodicalId\":21797,\"journal\":{\"name\":\"SEVENTH INTERNATIONAL SYMPOSIUM ON NEGATIVE IONS, BEAMS AND SOURCES (NIBS 2020)\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2021-07-30\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"SEVENTH INTERNATIONAL SYMPOSIUM ON NEGATIVE IONS, BEAMS AND SOURCES (NIBS 2020)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1063/5.0058053\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"SEVENTH INTERNATIONAL SYMPOSIUM ON NEGATIVE IONS, BEAMS AND SOURCES (NIBS 2020)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1063/5.0058053","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

本文提出了一种基于改进局部强度聚类的脑磁共振图像强度均匀性估计和分割方法。将该方法应用于Simons MRI扫描仪在1.5T和3 T下采集的脑网模拟数据库合成数据。该算法在均匀性校正、降噪和组织分割方面获得了高效、同步的效果。将一种改进的相干局部强度聚类现象和chambolle快速双呕吐方法应用于50张脑磁共振图像数据集。综上所述,该算法在整体有效性上强于其他强度均匀性和组织分割算法。将该算法与统一分割方法“FCM”、“核FCM”和“乘法内禀分量优化”进行了比较,在时间响应方面,仿真结果更优。Jaccard相似指数测度和Dice相似系数表明,一个利用合格能源的可用模范衣柜能够达到的JSIM值为0.988,DSC值为0.99。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Performance and analysis of brain MRI segmentation in MATLAB
In this paper, “Brain MR Image Intensity in homogeneity estimation and Segmentation using Modified Local Intensity Clustering” is proposed. This method is applied on synthetic data taken from brain web simulated database which are taken at to 1.5T and three T MR of Simons MRI Scanner. The efficient, simultaneous intensity in homogeneity correction, noise reduction and tissue segmentation is obtained with this algorithm. A modified coherent local intensity clustering phenomenon along with chambolle’s fast twin emesis manner is applied on a dataset of 50 brain MR images. Parenthetically the overall effectively of powerful algorithm over other intensity in homogeneity and tissue segmentation algorithms. The proposed algorithm is compared with the unified segmentation methods, “FCM, Kernel FCM and Multiplicative Intrinsic Component Optimization (MICO)”, In terms of time response, the simulation results obtained are superior., Jaccard Similarity Index Measure and Dice similarity coefficient it is ended a utilize the qualified energy usable role model closet capable of achieve JSIM is 0.988 and DSC is 0.99.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Dynamic analysis on supporting structure of air borne vehicle subjected to random vibrations Recent achievements in studies of negative beam formation and acceleration in the tandem accelerator at Budker Institute Experimental study on foam concrete with polypropylene fibers and Nylon fibers Prediction of negative hydrogen ion density in permanent magnet-based helicon ion source (HELEN) using deep learning techniques Analysis on slot curvature and contact stresses on Geneva wheel
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1