{"title":"仿生支架材料在组织工程中的应用","authors":"E. Kolos, A. Ruys","doi":"10.4172/1662-100X.1000E101","DOIUrl":null,"url":null,"abstract":"Tissue engineering offers a novel route for repairing damaged or diseased tissue by incorporating the patient’s own healthy cells or donated cells into temporary scaffolds that act as a matrix for cell cultivation. The structure and properties of these scaffolds must be selected to ensure normal cell behaviour and performance of the cultivated tissue. The tissue scaffolds support cellular growth and activity both before implantation and during remodelling of surrounding tissue after implantation.","PeriodicalId":15198,"journal":{"name":"Journal of Biomimetics, Biomaterials and Tissue Engineering","volume":"8 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2013-12-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Biomimetic Scaffold Materials Used in Tissue Engineering\",\"authors\":\"E. Kolos, A. Ruys\",\"doi\":\"10.4172/1662-100X.1000E101\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Tissue engineering offers a novel route for repairing damaged or diseased tissue by incorporating the patient’s own healthy cells or donated cells into temporary scaffolds that act as a matrix for cell cultivation. The structure and properties of these scaffolds must be selected to ensure normal cell behaviour and performance of the cultivated tissue. The tissue scaffolds support cellular growth and activity both before implantation and during remodelling of surrounding tissue after implantation.\",\"PeriodicalId\":15198,\"journal\":{\"name\":\"Journal of Biomimetics, Biomaterials and Tissue Engineering\",\"volume\":\"8 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2013-12-26\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Biomimetics, Biomaterials and Tissue Engineering\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.4172/1662-100X.1000E101\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Biomimetics, Biomaterials and Tissue Engineering","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.4172/1662-100X.1000E101","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Biomimetic Scaffold Materials Used in Tissue Engineering
Tissue engineering offers a novel route for repairing damaged or diseased tissue by incorporating the patient’s own healthy cells or donated cells into temporary scaffolds that act as a matrix for cell cultivation. The structure and properties of these scaffolds must be selected to ensure normal cell behaviour and performance of the cultivated tissue. The tissue scaffolds support cellular growth and activity both before implantation and during remodelling of surrounding tissue after implantation.