{"title":"金属增材制造紧凑型拟人夹具柔性铰链设计与优化","authors":"M. Tschiersky, Jan De Jong, Dannis Brouwer","doi":"10.1115/1.4063362","DOIUrl":null,"url":null,"abstract":"\n Flexure-based grippers offer an attractive alternative to conventional grippers used in robotics and automation. However, most existing designs appear to suffer from insufficient range of motion, loadability and support stiffness. This paper presents an approach to obtain well-performing flexure hinges for compact anthropomorphic grippers made via metal additive manufacturing. We propose a flexure hinge architecture that achieves a high range of motion despite the challenging combination of a small design space, high Young's modulus and limited minimum feature size. Furthermore, we present an optimization procedure to generate suitable tendon-driven designs with high loadability. Using this framework, a flexure hinge with an outer diameter of 21.5 mm and range of motion of ±30 deg is synthesized. For the range of 0 to 30 deg simulations show a lateral loadability of 52.5 to 18.6 N and lateral support stiffness of 12309 to 11130 N/m, determined at a gripper interface located 41.2 mm from the hinge pivot axis. Experiments confirm a loadability of at least 15.4 N and determined a stiffness of 8982 to 9727 N/m for same conditions. The results show that the flexure hinge architecture has large potential for a wide range of applications, while in combination with the optimization procedure superior designs for tendon-driven grippers can be obtained.","PeriodicalId":50137,"journal":{"name":"Journal of Mechanical Design","volume":"28 1","pages":""},"PeriodicalIF":2.9000,"publicationDate":"2023-09-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Flexure hinge design and optimization for compact anthropomorphic grippers made via metal additive manufacturing\",\"authors\":\"M. Tschiersky, Jan De Jong, Dannis Brouwer\",\"doi\":\"10.1115/1.4063362\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"\\n Flexure-based grippers offer an attractive alternative to conventional grippers used in robotics and automation. However, most existing designs appear to suffer from insufficient range of motion, loadability and support stiffness. This paper presents an approach to obtain well-performing flexure hinges for compact anthropomorphic grippers made via metal additive manufacturing. We propose a flexure hinge architecture that achieves a high range of motion despite the challenging combination of a small design space, high Young's modulus and limited minimum feature size. Furthermore, we present an optimization procedure to generate suitable tendon-driven designs with high loadability. Using this framework, a flexure hinge with an outer diameter of 21.5 mm and range of motion of ±30 deg is synthesized. For the range of 0 to 30 deg simulations show a lateral loadability of 52.5 to 18.6 N and lateral support stiffness of 12309 to 11130 N/m, determined at a gripper interface located 41.2 mm from the hinge pivot axis. Experiments confirm a loadability of at least 15.4 N and determined a stiffness of 8982 to 9727 N/m for same conditions. The results show that the flexure hinge architecture has large potential for a wide range of applications, while in combination with the optimization procedure superior designs for tendon-driven grippers can be obtained.\",\"PeriodicalId\":50137,\"journal\":{\"name\":\"Journal of Mechanical Design\",\"volume\":\"28 1\",\"pages\":\"\"},\"PeriodicalIF\":2.9000,\"publicationDate\":\"2023-09-07\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Mechanical Design\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://doi.org/10.1115/1.4063362\",\"RegionNum\":3,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"ENGINEERING, MECHANICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Mechanical Design","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1115/1.4063362","RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENGINEERING, MECHANICAL","Score":null,"Total":0}
Flexure hinge design and optimization for compact anthropomorphic grippers made via metal additive manufacturing
Flexure-based grippers offer an attractive alternative to conventional grippers used in robotics and automation. However, most existing designs appear to suffer from insufficient range of motion, loadability and support stiffness. This paper presents an approach to obtain well-performing flexure hinges for compact anthropomorphic grippers made via metal additive manufacturing. We propose a flexure hinge architecture that achieves a high range of motion despite the challenging combination of a small design space, high Young's modulus and limited minimum feature size. Furthermore, we present an optimization procedure to generate suitable tendon-driven designs with high loadability. Using this framework, a flexure hinge with an outer diameter of 21.5 mm and range of motion of ±30 deg is synthesized. For the range of 0 to 30 deg simulations show a lateral loadability of 52.5 to 18.6 N and lateral support stiffness of 12309 to 11130 N/m, determined at a gripper interface located 41.2 mm from the hinge pivot axis. Experiments confirm a loadability of at least 15.4 N and determined a stiffness of 8982 to 9727 N/m for same conditions. The results show that the flexure hinge architecture has large potential for a wide range of applications, while in combination with the optimization procedure superior designs for tendon-driven grippers can be obtained.
期刊介绍:
The Journal of Mechanical Design (JMD) serves the broad design community as the venue for scholarly, archival research in all aspects of the design activity with emphasis on design synthesis. JMD has traditionally served the ASME Design Engineering Division and its technical committees, but it welcomes contributions from all areas of design with emphasis on synthesis. JMD communicates original contributions, primarily in the form of research articles of considerable depth, but also technical briefs, design innovation papers, book reviews, and editorials.
Scope: The Journal of Mechanical Design (JMD) serves the broad design community as the venue for scholarly, archival research in all aspects of the design activity with emphasis on design synthesis. JMD has traditionally served the ASME Design Engineering Division and its technical committees, but it welcomes contributions from all areas of design with emphasis on synthesis. JMD communicates original contributions, primarily in the form of research articles of considerable depth, but also technical briefs, design innovation papers, book reviews, and editorials.