{"title":"用有限元法估计射频平面线圈带状和圆形导线的损耗","authors":"Giulio Giovannetti, Nunzia Fontana, Agostino Monorchio, Michela Tosetti, Gianluigi Tiberi","doi":"10.1002/cmr.b.21358","DOIUrl":null,"url":null,"abstract":"<p>An accurate coil design is a fundamental task to maximize signal-to-noise ratio in magnetic resonance applications. Coil design techniques take advantage of computer simulations especially when coil size is comparable to the radiofrequency (RF) wavelength. In particular, the estimation of the losses within the conductors as well as the radiative losses, both as a function of frequency, is instrumental to a complete coil performance characterization. However, the cross-sectional shape of the conductors strongly affects the radiofrequency coil's performance, especially at those frequencies where conductor losses represent the dominant power dissipation mechanism. Indeed, at radiofrequencies, the current flowing in the conductor is distributed in the proximity of its surface instead of being uniformly distributed over the cross section; it follows that an accurate conductor losses estimation can be performed only in the case of wire conductors by using analytical formulations. For strip conductors, although different theoretical approaches have been proposed in literature by taking into account the losses, no closed-form expression for conductors resistance is available which takes into account both classical and lateral skin effects. In this work, finite element method (FEM) simulations have been performed for estimating conductor and radiative losses in planar surface loops made of strips and circular wires; the results have been compared against analytical formulations and literature data. Workbench tests performed on two circular coil prototypes, the first one constituted by a strip and the second one by circular wire conductors, tuned at 63.9 MHz and 127.8 MHz, showed a good agreement with FEM simulations.</p>","PeriodicalId":50623,"journal":{"name":"Concepts in Magnetic Resonance Part B-Magnetic Resonance Engineering","volume":"47B 3","pages":""},"PeriodicalIF":0.9000,"publicationDate":"2017-11-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1002/cmr.b.21358","citationCount":"11","resultStr":"{\"title\":\"Estimation of losses in strip and circular wire conductors of radiofrequency planar surface coil by using the finite element method\",\"authors\":\"Giulio Giovannetti, Nunzia Fontana, Agostino Monorchio, Michela Tosetti, Gianluigi Tiberi\",\"doi\":\"10.1002/cmr.b.21358\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>An accurate coil design is a fundamental task to maximize signal-to-noise ratio in magnetic resonance applications. Coil design techniques take advantage of computer simulations especially when coil size is comparable to the radiofrequency (RF) wavelength. In particular, the estimation of the losses within the conductors as well as the radiative losses, both as a function of frequency, is instrumental to a complete coil performance characterization. However, the cross-sectional shape of the conductors strongly affects the radiofrequency coil's performance, especially at those frequencies where conductor losses represent the dominant power dissipation mechanism. Indeed, at radiofrequencies, the current flowing in the conductor is distributed in the proximity of its surface instead of being uniformly distributed over the cross section; it follows that an accurate conductor losses estimation can be performed only in the case of wire conductors by using analytical formulations. For strip conductors, although different theoretical approaches have been proposed in literature by taking into account the losses, no closed-form expression for conductors resistance is available which takes into account both classical and lateral skin effects. In this work, finite element method (FEM) simulations have been performed for estimating conductor and radiative losses in planar surface loops made of strips and circular wires; the results have been compared against analytical formulations and literature data. Workbench tests performed on two circular coil prototypes, the first one constituted by a strip and the second one by circular wire conductors, tuned at 63.9 MHz and 127.8 MHz, showed a good agreement with FEM simulations.</p>\",\"PeriodicalId\":50623,\"journal\":{\"name\":\"Concepts in Magnetic Resonance Part B-Magnetic Resonance Engineering\",\"volume\":\"47B 3\",\"pages\":\"\"},\"PeriodicalIF\":0.9000,\"publicationDate\":\"2017-11-20\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://sci-hub-pdf.com/10.1002/cmr.b.21358\",\"citationCount\":\"11\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Concepts in Magnetic Resonance Part B-Magnetic Resonance Engineering\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://onlinelibrary.wiley.com/doi/10.1002/cmr.b.21358\",\"RegionNum\":4,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"CHEMISTRY, PHYSICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Concepts in Magnetic Resonance Part B-Magnetic Resonance Engineering","FirstCategoryId":"3","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/cmr.b.21358","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
Estimation of losses in strip and circular wire conductors of radiofrequency planar surface coil by using the finite element method
An accurate coil design is a fundamental task to maximize signal-to-noise ratio in magnetic resonance applications. Coil design techniques take advantage of computer simulations especially when coil size is comparable to the radiofrequency (RF) wavelength. In particular, the estimation of the losses within the conductors as well as the radiative losses, both as a function of frequency, is instrumental to a complete coil performance characterization. However, the cross-sectional shape of the conductors strongly affects the radiofrequency coil's performance, especially at those frequencies where conductor losses represent the dominant power dissipation mechanism. Indeed, at radiofrequencies, the current flowing in the conductor is distributed in the proximity of its surface instead of being uniformly distributed over the cross section; it follows that an accurate conductor losses estimation can be performed only in the case of wire conductors by using analytical formulations. For strip conductors, although different theoretical approaches have been proposed in literature by taking into account the losses, no closed-form expression for conductors resistance is available which takes into account both classical and lateral skin effects. In this work, finite element method (FEM) simulations have been performed for estimating conductor and radiative losses in planar surface loops made of strips and circular wires; the results have been compared against analytical formulations and literature data. Workbench tests performed on two circular coil prototypes, the first one constituted by a strip and the second one by circular wire conductors, tuned at 63.9 MHz and 127.8 MHz, showed a good agreement with FEM simulations.
期刊介绍:
Concepts in Magnetic Resonance Part B brings together engineers and physicists involved in the design and development of hardware and software employed in magnetic resonance techniques. The journal welcomes contributions predominantly from the fields of magnetic resonance imaging (MRI), nuclear magnetic resonance (NMR), and electron paramagnetic resonance (EPR), but also encourages submissions relating to less common magnetic resonance imaging and analytical methods.
Contributors come from both academia and industry, to report the latest advancements in the development of instrumentation and computer programming to underpin medical, non-medical, and analytical magnetic resonance techniques.