基于行为生物识别的MOOC认证方法,具有抗模仿的鲁棒性

Markus Krause
{"title":"基于行为生物识别的MOOC认证方法,具有抗模仿的鲁棒性","authors":"Markus Krause","doi":"10.1145/2556325.2567881","DOIUrl":null,"url":null,"abstract":"Ensuring authorship in online taken exams is a major challenge for e-learning in general and MOOC's in particular. In this paper, we introduce and evaluate a method to verify student identities using stylometry. We present a carefully composed feature set and use it with a K-Nearest Neighbor algorithm. We demonstrate that our method can effectively authenticate authors and is robust against imitation attacks.","PeriodicalId":20830,"journal":{"name":"Proceedings of the first ACM conference on Learning @ scale conference","volume":"116 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2014-03-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"19","resultStr":"{\"title\":\"A behavioral biometrics based authentication method for MOOC's that is robust against imitation attempts\",\"authors\":\"Markus Krause\",\"doi\":\"10.1145/2556325.2567881\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Ensuring authorship in online taken exams is a major challenge for e-learning in general and MOOC's in particular. In this paper, we introduce and evaluate a method to verify student identities using stylometry. We present a carefully composed feature set and use it with a K-Nearest Neighbor algorithm. We demonstrate that our method can effectively authenticate authors and is robust against imitation attacks.\",\"PeriodicalId\":20830,\"journal\":{\"name\":\"Proceedings of the first ACM conference on Learning @ scale conference\",\"volume\":\"116 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2014-03-04\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"19\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings of the first ACM conference on Learning @ scale conference\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1145/2556325.2567881\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the first ACM conference on Learning @ scale conference","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/2556325.2567881","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 19

摘要

确保在线考试的作者身份是整个电子学习,尤其是MOOC的主要挑战。在本文中,我们介绍并评估了一种使用文体学来验证学生身份的方法。我们提出了一个精心组成的特征集,并将其与k -最近邻算法一起使用。我们证明了我们的方法可以有效地验证作者,并且对模仿攻击具有鲁棒性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
A behavioral biometrics based authentication method for MOOC's that is robust against imitation attempts
Ensuring authorship in online taken exams is a major challenge for e-learning in general and MOOC's in particular. In this paper, we introduce and evaluate a method to verify student identities using stylometry. We present a carefully composed feature set and use it with a K-Nearest Neighbor algorithm. We demonstrate that our method can effectively authenticate authors and is robust against imitation attacks.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
The challenges of using a MOOC to introduce "absolute beginners" to programming on specialized hardware L@S 2014 demo: best practices for MOOC video Feature engineering for clustering student solutions "Why did you enroll in this course?": developing a standardized survey question for reasons to enroll Evaluating educational interventions at scale
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1