{"title":"OSPREY:通过剥离二进制的概率分析恢复变量和数据结构","authors":"Zhuo Zhang, Yapeng Ye, Wei You, Guanhong Tao, Wen-Chuan Lee, Yonghwi Kwon, Yousra Aafer, X. Zhang","doi":"10.1109/SP40001.2021.00051","DOIUrl":null,"url":null,"abstract":"Recovering variables and data structure information from stripped binary is a prominent challenge in binary program analysis. While various state-of-the-art techniques are effective in specific settings, such effectiveness may not generalize. This is mainly because the problem is inherently uncertain due to the information loss in compilation. Most existing techniques are deterministic and lack a systematic way of handling such uncertainty. We propose a novel probabilistic technique for variable and structure recovery. Random variables are introduced to denote the likelihood of an abstract memory location having various types and structural properties such as being a field of some data structure. These random variables are connected through probabilistic constraints derived through program analysis. Solving these constraints produces the posterior probabilities of the random variables, which essentially denote the recovery results. Our experiments show that our technique substantially outperforms a number of state-of-the-art systems, including IDA, Ghidra, Angr, and Howard. Our case studies demonstrate the recovered information improves binary code hardening and binary decompilation.","PeriodicalId":6786,"journal":{"name":"2021 IEEE Symposium on Security and Privacy (SP)","volume":"15 1","pages":"813-832"},"PeriodicalIF":0.0000,"publicationDate":"2021-05-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"16","resultStr":"{\"title\":\"OSPREY: Recovery of Variable and Data Structure via Probabilistic Analysis for Stripped Binary\",\"authors\":\"Zhuo Zhang, Yapeng Ye, Wei You, Guanhong Tao, Wen-Chuan Lee, Yonghwi Kwon, Yousra Aafer, X. Zhang\",\"doi\":\"10.1109/SP40001.2021.00051\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Recovering variables and data structure information from stripped binary is a prominent challenge in binary program analysis. While various state-of-the-art techniques are effective in specific settings, such effectiveness may not generalize. This is mainly because the problem is inherently uncertain due to the information loss in compilation. Most existing techniques are deterministic and lack a systematic way of handling such uncertainty. We propose a novel probabilistic technique for variable and structure recovery. Random variables are introduced to denote the likelihood of an abstract memory location having various types and structural properties such as being a field of some data structure. These random variables are connected through probabilistic constraints derived through program analysis. Solving these constraints produces the posterior probabilities of the random variables, which essentially denote the recovery results. Our experiments show that our technique substantially outperforms a number of state-of-the-art systems, including IDA, Ghidra, Angr, and Howard. Our case studies demonstrate the recovered information improves binary code hardening and binary decompilation.\",\"PeriodicalId\":6786,\"journal\":{\"name\":\"2021 IEEE Symposium on Security and Privacy (SP)\",\"volume\":\"15 1\",\"pages\":\"813-832\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2021-05-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"16\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2021 IEEE Symposium on Security and Privacy (SP)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/SP40001.2021.00051\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2021 IEEE Symposium on Security and Privacy (SP)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/SP40001.2021.00051","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
OSPREY: Recovery of Variable and Data Structure via Probabilistic Analysis for Stripped Binary
Recovering variables and data structure information from stripped binary is a prominent challenge in binary program analysis. While various state-of-the-art techniques are effective in specific settings, such effectiveness may not generalize. This is mainly because the problem is inherently uncertain due to the information loss in compilation. Most existing techniques are deterministic and lack a systematic way of handling such uncertainty. We propose a novel probabilistic technique for variable and structure recovery. Random variables are introduced to denote the likelihood of an abstract memory location having various types and structural properties such as being a field of some data structure. These random variables are connected through probabilistic constraints derived through program analysis. Solving these constraints produces the posterior probabilities of the random variables, which essentially denote the recovery results. Our experiments show that our technique substantially outperforms a number of state-of-the-art systems, including IDA, Ghidra, Angr, and Howard. Our case studies demonstrate the recovered information improves binary code hardening and binary decompilation.