水泥、石膏、石灰石对粘土无侧限压缩性能的改善比较

I. P. Hastuty
{"title":"水泥、石膏、石灰石对粘土无侧限压缩性能的改善比较","authors":"I. P. Hastuty","doi":"10.22146/JCEF.43792","DOIUrl":null,"url":null,"abstract":"Soil stabilization is an effort to improve soil properties by adding additives in the soil to increase the soil strength and maintain the shear strength of the soil. There are many materials which can be used as stabilizers. The materials used in this study were cement, gypsum, and limestone, then the compressive strength values were compared by using the Unconfined Compression Test (UCT). The mixture combinations used in this study were 1% to 10% of cement, gypsum, and limestone on clay by curing for 14 days. The compressive strength value resulted from the unconfined compression test on the original soil sample was 1.4 kg/cm2. The original soil was classified as moderately sensitive soil because the sensitivity value of the original soil was 2. After being stabilized with various mixtures of cement, gypsum, and limestone, soil stabilization using cement obtained the maximum unconfined compressive strength value is 3.681 kg/cm2 in the mixture of 10%. Similarly, the soil stabilization using limestone and gypsum also obtained its maximum unconfined compressive strength value in the mixture of 10% is 3.307 kg/cm2 and 2.975 kg/cm2, respectively.","PeriodicalId":31890,"journal":{"name":"Journal of the Civil Engineering Forum","volume":"22 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2019-05-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":"{\"title\":\"Comparison of the Use of Cement, Gypsum, and Limestone on the Improvement of Clay through Unconfined Compression Test\",\"authors\":\"I. P. Hastuty\",\"doi\":\"10.22146/JCEF.43792\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Soil stabilization is an effort to improve soil properties by adding additives in the soil to increase the soil strength and maintain the shear strength of the soil. There are many materials which can be used as stabilizers. The materials used in this study were cement, gypsum, and limestone, then the compressive strength values were compared by using the Unconfined Compression Test (UCT). The mixture combinations used in this study were 1% to 10% of cement, gypsum, and limestone on clay by curing for 14 days. The compressive strength value resulted from the unconfined compression test on the original soil sample was 1.4 kg/cm2. The original soil was classified as moderately sensitive soil because the sensitivity value of the original soil was 2. After being stabilized with various mixtures of cement, gypsum, and limestone, soil stabilization using cement obtained the maximum unconfined compressive strength value is 3.681 kg/cm2 in the mixture of 10%. Similarly, the soil stabilization using limestone and gypsum also obtained its maximum unconfined compressive strength value in the mixture of 10% is 3.307 kg/cm2 and 2.975 kg/cm2, respectively.\",\"PeriodicalId\":31890,\"journal\":{\"name\":\"Journal of the Civil Engineering Forum\",\"volume\":\"22 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2019-05-17\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"3\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of the Civil Engineering Forum\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.22146/JCEF.43792\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of the Civil Engineering Forum","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.22146/JCEF.43792","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 3

摘要

土壤稳定是通过在土壤中添加添加剂来提高土壤强度和保持土壤的抗剪强度,从而改善土壤性质的一种努力。有许多材料可以用作稳定剂。本研究采用水泥、石膏和石灰石作为材料,采用无侧限压缩试验(UCT)对其抗压强度值进行比较。本研究中使用的混合物组合为1%至10%的水泥、石膏和石灰石在粘土上固化14天。原土样无侧限压缩试验得到的抗压强度值为1.4 kg/cm2。由于原始土壤的敏感性值为2,因此将原始土壤分类为中等敏感性土壤。水泥稳定土经各种水泥、石膏和石灰石的混合料稳定后,在10%的混合料中,水泥稳定土的最大无侧限抗压强度值为3.681 kg/cm2。同样,石灰石和石膏稳定土在掺量为10%时的最大无侧限抗压强度值分别为3.307 kg/cm2和2.975 kg/cm2。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Comparison of the Use of Cement, Gypsum, and Limestone on the Improvement of Clay through Unconfined Compression Test
Soil stabilization is an effort to improve soil properties by adding additives in the soil to increase the soil strength and maintain the shear strength of the soil. There are many materials which can be used as stabilizers. The materials used in this study were cement, gypsum, and limestone, then the compressive strength values were compared by using the Unconfined Compression Test (UCT). The mixture combinations used in this study were 1% to 10% of cement, gypsum, and limestone on clay by curing for 14 days. The compressive strength value resulted from the unconfined compression test on the original soil sample was 1.4 kg/cm2. The original soil was classified as moderately sensitive soil because the sensitivity value of the original soil was 2. After being stabilized with various mixtures of cement, gypsum, and limestone, soil stabilization using cement obtained the maximum unconfined compressive strength value is 3.681 kg/cm2 in the mixture of 10%. Similarly, the soil stabilization using limestone and gypsum also obtained its maximum unconfined compressive strength value in the mixture of 10% is 3.307 kg/cm2 and 2.975 kg/cm2, respectively.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
20
审稿时长
15 weeks
期刊最新文献
Airline Choice Decision for Jakarta-Denpasar Route During the Covid-19 Pandemic Comparative Seismic Analysis of G+20 RC Framed Structure Building for with and without Shear Walls Proposal and Evaluation of Vertical Vibration Theory of Air Caster Seismic Vulnerability Assessment of Regular and Vertically Irregular Residential Buildings in Nepal Numerical Study on the Effects of Helix Diameter and Spacing on the Helical Pile Axial Bearing Capacity in Cohesionless Soils
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1